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Abstract

The abundance of data published using Semantic Web technologies ratifies
their high degree of maturity reached. Moreover, the flexibility of the Re-
source Description Framework (RDF) enables it to model any knowledge
within a specific domain. This has given rise to a potential use of RDF
data as input for applications which were not originally designed to operate
online on Web data sources.

Recommender systems are one example of such applications. These aim to
predict the taste of a user towards a set of not consumed items and are
typically well optimized for fixed domains. The benefit of having a rec-
ommender system which takes advantage of Web knowledge is that a user
could be assisted in selecting information from the Web and, therefore, re-
ducing the information overload. However, these systems cannot handle the
diversity and unstructuredness of Semantic Web data. One of the reasons is
that Semantic Web query languages, such as SPARQL, support retrieval of
data exclusively based on facts; predictions or suggestions are entities that
cannot be explicitly retrieved.

In this thesis ReSPARQL will be presented: an extension of the SPARQL
syntax and semantics that fills this gap and enables a generic and flexi-
ble approach for recommendations over arbitrary RDF-graphs. It supports
content-based and collaborative filtering recommendations and allows both
paradigms to gain benefit from each other.
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Kurzfassung

Die Fülle an Daten, die durch Semantic Web Technologien veröffentlicht
wurden, bestätigt, dass diese Technologien sehr ausgereift sind. Die Flexi-
bilität des Resource Description Frameworks (RDF) ermöglicht es darüber
hinaus, jedes Wissen innerhalb eines spezifischen Anwendungsgebietes zu
modellieren. Dies führt dazu, dass RDF-Daten als möglicher Input für Ap-
plikationen genutzt werden können, die ursprünglich nicht dafür konzipiert
wurden, online Web Datenquellen zu verarbeiten.

Recommender Systeme sind ein Beispiel für diese Art von Applikationen.
Sie haben zum Ziel, den Geschmack eines Verbrauchers in Bezug auf noch
nicht konsumierte Objekte vorherzusagen, und sind typischerweise opti-
miert für feste Anwendungsgebiete. Der Vorteil eines Recommender Sys-
tems, das Kenntnisse aus dem Web nutzt, ist, zur Unterstützung des Ver-
brauchers Informationen aus dem Web auszuwählen, um die Informations-
flut einzuschränken. Diese Systeme können jedoch nicht mit der Unter-
schiedlichkeit und Unstrukturiertheit von Semantic Web Daten umgehen.
Einer der Gründe dafür ist, dass Semantic Web Abfragesprachen, so wie
SPARQL, nur eine Datenerfassung unterstützen, die ausschließlich auf Fak-
ten basiert. Vorhersagen und Vorschläge sind dagegen Datensätze, die nicht
explizit abgerufen werden können.

In dieser Arbeit wird ReSPARQL vorgestellt, eine Erweiterung der SPARQL-
Syntax und -Semantik, die diese Lücke füllt und einen allgemeinen und fle-
xiblen Ansatz für Empfehlungen über beliebige RDF-Graphen ermöglicht.
ReSPARQL unterstützt content-based und collaborative filtering Empfeh-
lungen und ermöglicht es, dass beide Paradigmen voneinander profitieren.
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Chapter 1
Introduction

SPARQL [15] and recommender systems [13] are two paradigms with dif-

ferent characteristics. On the one hand, SPARQL is one of the technology

pillars of the Semantic Web vision [11]. It is both a protocol and declarative

query language, which allows users and applications to interact with ontolo-

gies and RDF-data. Today, with more than 19 billion triples1, the amount

of linked data confirms the success of the Semantic Web initiative.

Figure 1.1: Fragment of the Linked Open Data visualization by Richard

Cyganiak and Anja Jentzsch.

1http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics

1
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SPARQL 1.1 and extensions like SPARQL 1.1 Federated Query2 intro-

duced mechanisms for executing queries distributed over different SPARQL

endpoints. This enables us to combine information from different semantic

knowledge bases, e.g. DBPedia [9] or YAGO [33].

Despite the many new useful features introduced in SPARQL 1.1 ques-

tions like “What kind of movie might a user be interested in?” cannot be

answered, because SPARQL has been designed to find explicit patterns.

On the other hand, recommender systems provide suggestions that re-

flect users’ interests based on their preferences, traits or interactions with

other users [5]. The problem has been addressed since the mid-1990s and

recommender systems made significant progress in specific domains like mu-

sic [17, 22], movies [19], or books [24].

A recommender system on top of RDF-data would be beneficial for many

reasons. First of all, RDF-data has a heterogeneous and ubiquitous struc-

ture, and it is already structured in an ontological way [16, 20]. This allows

us to obtain a vast diversity of recommendations which goes beyond the

classic user-item paradigm. Secondly, the lower layers of the Semantic Web

like RDF and RDFS have reached maturity and the amount of interlinked

data published in accessible databases [6, 20, 29] gives way to cross-domain

recommendations. Finally, it is possible to improve the quality of the rec-

ommendations by eventually filling information gaps.

The question arises how both processing paradigms can be combined.

One simple approach consists in combining both recommender systems and

SPARQL, where the latter is used for preprocessing the recommender’s in-

put data. The recommender system is in this architecture a middle layer

component responsible for computing similarities between objects, neigh-

borhoods, etc. The computed information is in turn added to the original

data source making it possible to use conventional query languages. One

example of this is the approach presented by Policarpio et al. [25]. However,

such integration is superficial and, as will be shown, it imposes limits to the

recommender’s flexibility.

The approach presented here consists in designing a query language to

fill this gap. ReSPARQL3 is an extension of SPARQL which produces sug-

2http://www.w3.org/TR/sparql11-federated-query/
3Recommener engine SPARQL Protocol and RDF Query Language

2
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1.1. Initial goal and contributions

gestions directly from Semantic Web data sources in a flexible and generic

way, being the first of its kind that offers a tight integration with the Se-

mantic Web vision and the possibility of specifying highly parameterizable

queries.

The advantages of having a query language like ReSPARQL are self-

evident. To illustrate the utility, let’s consider the following use-case:

Suppose a developer maintains an RDF-store concerning a social network

and is requested to implement a recommender system able to produce rec-

ommendations of different kinds:

Target of

recommendations

Recommended

items

Criteria

Users Advertisement Based on user preferences, origin, ac-

tivities, etc.

Users Friends

(other users)

Based on similar characteristics.

Advertisement Target audience (group

of users)

Based on advertised product and user

preferences.

Table 1.1: ReSPARQL’s motivational example

The time and resources needed to implement such a system from scratch

are significant. ReSPARQL queries, as will be shown, are expressive enough

to cover the above mentioned cases and many more. Furthermore, a frame-

work capable of evaluating ReSPARQL queries permits to obtain recom-

mendations without having to design and implement new components.

1.1 Initial goal and contributions

The initial goal was to define a query language with a degree of expressive-

ness similar to REQUEST [6] while having the ability to operate on top of

Semantic Web data. After acquiring a deep understanding of both Semantic

Web and recommender systems, it became clear that it would be beneficial

to design a query language that retrieves data like SPARQL, i.e. by means

of graph pattern matching, but which could surpass its expressiveness.

In addition, the implementation of a framework able to execute ReSPARQL

queries was also an aim. A recommender system was initially proposed based

3



1.2. Thesis outline

on the work made by Kämpgen et al. [18], i.e. a system on which queries

are mapped to OLAP operations. Finally, the project went more and more

in the direction of the Semantic Web because of the clear benefits in regards

to the integration.

The main contributions of this master thesis can be summarized as fol-

lows. The first goal consisted in designing ReSPARQL as an extension of

SPARQL in compliance with the principles of its specification. ReSPARQL

is defined as a new query form (like SELECT, CONSTRUCT, ASK and DE-

SCRIBE ). An extension brings into the language all benefits of SPARQL,

e.g. the fact that it is not restricted to a pre-defined and fixed ontology.

ReSPARQL queries can be used to obtain both content-based and collabora-

tive filtering recommendations. Hybrid recommendations are also partially

supported. The second goal was to define formal semantics of ReSPARQL

based on the SPARQL algebra. New algebra operators are defined to achieve

this. Finally, the third goal consisted in implementing a standalone recom-

mender repository packaged as an extension of Sesame’s Sail API4 which

makes it possible to evaluate recommendation queries. This last goal re-

quired deep understanding of compiler design, architecture of an RDF store,

etc. As a result, the recommender system can be integrated into a Java

project just as Sesame, by simply pointing to the correct dependencies or

by adding the libraries.

1.2 Thesis outline

The thesis is organized as follows: Chapter 2 presents the fundamentals

of both Semantic Web and Recommender Systems, which are necessary to

understand the approach of ReSPARQL. At the end of this chapter the

reader will find the related works.

Chapter 3 is divided into two main parts: The first one presents the

syntax of the query language through examples, whereas the latter focuses

on the formalized semantics. For better comprehension, this part starts with

an introduction of the SPARQL algebra and its operators.

4Sesame is an open source Java framework for storing, querying, and reasoning with

RDF and RDF Schema. It can be used as a database for RDF and RDF Schema, or as a

Java library for applications that need to work with RDF. http://www.openrdf.org

4

http://www.openrdf.org


1.2. Thesis outline

Chapter 4 depicts the architecture of the ReSPARQL recommender repos-

itory. The first section briefly explains the architecture of Sesame, followed

by an overview of the repository’s architecture and a more detailed descrip-

tion of the main components.

Finally, conclusions and future work are presented in chapter 5.

5



Chapter 2
Preliminaries

ReSPARQL is an extension of SPARQL and therefore, it also queries against

RDF datasets, being these last two W3C recommendations. The first section

provides an introduction to the Semantic Web and hence gives an overview

of all related technologies with a special focus on RDF and SPARQL.

The second section presents the fundamentals of recommender systems:

common techniques to compute similarities and predict suggestions. This

covers two classic approaches, content-based filtering and collaborative fil-

tering and provides basic notions of hybrid implementations.

The purpose of the third section, recommendations on top of RDF

graphs, is to present an intuitive analysis about the patterns of which a

recommender system could make use for computing recommendations.

The fourth section presents the related work. Different approaches have

been proposed to obtain recommendations from RDF data. We will see how

these differ from ReSPARQL.

2.1 The Semantic Web

The World Wide Web was conceived as a system of interlinked documents

without a specific purpose. Additional layers were designed on top to permit

us to request documents and present them to end-users. This flexibility led

to a vast number of both client and server side web-development techniques

6



2.1. The Semantic Web

and to a rapid increase of the system’s size1. In this scenario search engines

were an important tool to retrieve documents in the system with advanced

keyword matching and rank algorithms.

However, during the gradual transition to the Web 2.0 the way users

communicate, and the way information is diffused and used to provide ser-

vices have also changed. Computers became over time, together with their

traditional role of computing calculations and processing information, entry

points of information [21]. In this new scenario users require answers to

more complex questions. However, this is not possible under our current

paradigm. To illustrate this, suppose one enters the following (paradox)

query2 in Google’s search box:

Example of semantic queries Google cannot answer to

The top 5 pages for this query are illustrated in figure 2.1. None of the

returned pages provides an answer to that question3.

This overtakes the classic “no recall” problem of search-engines. The

problem lies in the lack of understanding of the real semantic of the query.

Even for queries with a reasonable set of returned pages is not the search

engine providing users with answers, but users who have to browse the

returned pages and to extract the information they need in order to answer

to their own questions.

The biggest limitation to provide better answers is that the current model

of interlinked documents doesn’t contain additional meta-data that allows

building a knowledge base that could be in turn used to interpret sentences

and infer useful information from it.

1According to www.worldwidewebsize.com the Indexed Web contains at least 1.63

billion pages (queried on Wednesday, 08th of January, 2014).
2These results were retrieved the 28th of December, 2013. In September 2013 Google

launched a new search algorithm called Hummingbird, which partially supports semantic

search. However, for most of the queries, the classic Google algorithm is still used.
3The top result is a scientific article about a GATE MIMIR, an information repository

not directly related to Google. The paper has two instances of the word “Google”. One

is located in the title, “Answering questions Google can’t”, and the second one is in the

abstract: “[...] and search engines such as Google [...]” The remaining four pages are

related to semantic search, or to the new Google Hummingbird’s algorithm, which can

partially answering semantic queries, but none of the pages contains an answer to the

original question.

7
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2.1. The Semantic Web

Figure 2.1: Top five results of query “Example of semantic queries Google

cannot answer to”.

To improve this further, one approach consists in representing web con-

tent in a machine-processable form, creating scope for new algorithms. The

Semantic Web is referred to as the initiative of gradually transforming the

existing Web into a distributed and decentralized database of knowledge

by adding semantic content to web documents. The idea is not to replace

all existing documents, but to add semantic content that describes the re-

sources within the documents. The movement is led by the World Wide

Web Consortium (W3C) and Tim Berners-Lee, one of the Web pioneers, is

one active contributor.

8



2.1. The Semantic Web

2.1.1 The Semantic Web Stack

Therefore, the Semantic Web required a new architecture in order to reengi-

neer the WWW. The Semantic Web Stack is a layered architecture, but

neither has it been the only one proposed nor it has stopped to evolve. The

layers, which are built up one on top of another, illustrate which technologies

have been standardized to make the Semantic Web possible.

User Interface & Applications

URI / IRI

XML
RDF

RDFS

Unifying Logic

Rule

RIF

SPARQL

C
ry

p
to

Trust

Proof

Ontology

OWL

Figure 2.2: Illustration of the Semantic Web Stack4

In the remaining part of this section I will provide a brief description of

the layers on which ReSPARQL is based.

At the bottom we find Uniform Resource Identifier (URI) and Interna-

tionalized Resource Identifier (IRI). If one wants to describe a resource, e.g.

a movie, a mechanism to identify the resource is needed. An identifier also

makes it possible to reference the resource across the web. For instance, if a

remote knowledge database has already described all properties of a movie,

there’s no reason why this should be done again. URI provides a mechanism

to uniquely identify resources on the web. This does not imply that the re-

source can be retrieved, but only identified. IRIs have the same role, but

use a different character set, UNICODE, to allow users to create identifiers

in all possible languages.

XML is a markup language. Although this layer is not directly used in

ReSPARQL, it is by RDF. XML user-defined markups allow writing struc-

4Source: http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/

9
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2.1. The Semantic Web

tured Web documents, easily understandable and usable by humans. XML

allows us to integrate together content and tag-based information that de-

scribes the content. It is also a format for sending documents across the

Web. However, XML is not expressive enough to “give” semantic to docu-

ments.

Resource Description Framework (RDF) is the Semantic Web’s subja-

cent model that allows us to create databases of knowledge starting from

small units, i.e. simple statements about Web resources. A resource is an

object, an entity, anything that can be described. A statement is the basic

knowledge block; it asserts a property of an object using three elements,

subject-predicate-object, and for this reason is called triple. An RDF state-

ment is similar to a statement in a natural language. For instance, this

statement says something about a famous actor, our resource.

Marlon Brando is an actor.

A very intuitive graphic representation of a set of triples is a directed

graph with labeled nodes and arcs directed from the resource (or subject)

to the value (or object). RDF has an XML-based syntax (it is not the only

syntax available) and therefore, it is positioned on top of the XML layer.

Ideally each web document will contain links between resources and its

descriptors for easy retrieval5. By doing so a search engine would not only

find the name of an actor in a document, but would also be able to access

the description and hence to know that the resource is actually an actor and

hence a person, etc., having a set of properties.

Sometimes to describe resources one has to abstract and find the relation-

ship between classes of resources. For instance, a movie is a film production

made by a producer with a certain budget. The resulting hierarchy is in

this context called vocabulary or ontology. Since RDF doesn’t make any

assumptions about a particular domain, if one wants to define a specific

vocabulary it is necessary to create a schema by means of RDF Schema

(RDFS). This semantic information is also machine-accessible.

Actor is a subclass of movie staff.

5A proposed technology to achieve this is RDFa www.w3.org/TR/rdfa-syntax/.

10
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2.1. The Semantic Web

This statement expresses that each instance of an actor is also a member

of the movie staff. RDFS’ derivation rules like the one above make it possible

to derive new implicit statements, e.g. that Marlon Brando is indeed a

member of a movie staff. RDFS provides a set of modelling primitives that

permits to organize Web objects hierarchically, but it is not limited to this:

application-specific knowledge is also possible.

SPARQL Query Language for RDF6 is the recommended declarative

query language for writing queries against RDF datasets. It also defines a

protocol for accessing RDF Data. It is based on graph pattern matching.

The basic block to build a graph pattern is a triple pattern, which is akin to

an RDF triple. The difference resides in the fact that it’s possible to replace

one or more RDF terms, subject, predicate and/or object, with a variable.

Moreover, it is possible to combine triple patterns to form more complex

graph patterns and to apply filter conditions.

2.1.2 Resource Description Framework

According to the W3C (World Wide Web Consortium) Semantic Web Activ-

ity Statement, “the Resource Description Framework (RDF) is a language

designed to support the Semantic Web, in much the same way that HTML

is the language that helped initiate the original Web. RDF is a framework

for supporting resource description, or metadata (data about data), for the

Web. RDF provides common structures that can be used for interoperable

XML data exchange” [27].

Indeed, RDF provides a mechanism to add machine-processable state-

ments about resources. This goes around three key concepts, which will be

here briefly explained: resources, properties and statements.

Resources, properties and statements

One might think of a resource as an object in the widest possible way: an

entity that belongs to a certain domain and one wants to talk about. Every

resource is then uniquely identified by an URI.

Properties describe relations between resources and are treated in RDF

as a special kind of resources and therefore, are also identified by URIs.

6http://www.w3.org/TR/rdf-sparql-query/
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The fact that URIs are used to identify both resources and properties is

of strategic importance: it is possible to build a knowledge base by reusing

resources somewhere defined and this allows us to get benefit also from their

semantics.

Statements or RDF Triples are the basic building block to assert prop-

erties of resources, e.g. an attribute, a relationship, a characteristic, etc. It

is a 3-tuple made of three units of information. This is referred as subject-

predicate-object7, because of its resemblance to its counterpart in linguistics.

Indeed, in order to assert a property in natural language these three elements

compose the required single unit. Subjects correspond to the above defined

resources, and predicates correspond to properties. The object is the value

of the subject’s property type.

For instance, the following statement “The song Unfaithful is interpreted

by Rihanna” can be expressed in RDF as follows:

http://www.resparql.org/lastfm#Unfaithful

http://www.resparql/resparql/lastfm#interpreted

http://www.resparql.org/lastfm#Rihanna

In RDF it is also possible to assert something, e.g. an opinion about

a statement: “Beyonce thinks that the song Unfaithful is interpreted by

Rihanna”. This kind of properties in which one expresses belief or trust

in another statement might be useful in some applications and is known as

reification.

RDF Graph

The RDF graph is the default method for describing RDF data models.

There are three kinds of nodes: URIref (which uses an URI identifier), blank

nodes and literals. By convention, URIs are shown in ellipses and literals

are enclosed in rectangles.

Nodes, for which not having an identifier is reasonable or for which this

is unknown, are called blank or anonymous nodes and have local scope (i.e.

they cannot be referenced outside of the graph they belong to).

A literal, on the other hand, consists of three parts: a character string,

an optional language and data type like integer or date (the type is identified

7In some literature this is known as object-attribute-value.
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by an URI). For instance, one could use a typed literal to describe Rihanna’s

age as being the integer number 25:

http://www.resparql.org/lastfm#Rihanna

http://www.resparql.org/lastfm#age

“25”ˆhttp://www.w3.org/2001/XMLSchema#integer

As the example shows the data typing scheme used is part of the XML

Schema specification, which predefines a large range of data types including

Booleans, integers, floating-point numbers, times, and dates.

The following figure illustrates a small RDF graph of a movie dataset

designed within the scope of my thesis:
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Figure 2.3: Movies dataset, reduced version.

Serialization

Along with RDF/XML, there are other formats in which RDF graphs can be

serialized. In Notation3 or N3 syntax the subject, predicate and object are

separated by spaces, and the triple is terminated with a period (.). To avoid

writing the complete URI all the time, it is possible to declare a @prefix

〈QName〉 〈URI〉, where QName is a qualified name, i.e. a name that follows

a strict set of rules. For instance:

@prefix lastfm:<http://www.resparql.org/lastfm#> .

lastfm:Unfaithful lastfm:interpreted lastfm:Rihanna .

lastfm:Unfaithful lastfm:trackDuration “228000” .
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N3 provides more abbreviation mechanisms such as replacing the subject

with “;” to indicate that the subject is the same as in the previous triple,

or “,” to replace both subject and predicate.

N-triples is another serialization format, similar to N3, but without of

most abbreviations shortcuts and therefore more verbose.

Turtle (Terse RDF Triple Language) is the kind of serialization used in

ReSPARQL. Turtle’s syntax is a subset of N3: it renounces to expressiveness

power by removing the first-order-logic features of N3 in favor of simplicity.

An RDF Dataset serialized in Turtle is also valid in N3 format.

2.1.3 RDF Schema

In order to add semantic content to our data sometimes it’s necessary to

specify a vocabulary. RDF does not define the semantics of any domain nor

make assumptions about any particular application domain, so it is up to

the user to define one.

In the remaining part of this section I will provide an overview of the

constructs that can be used to describe a particular domain.

Class and Properties

The first step consists in defining the objects one wants to talk about. For

example, in a context of movies one might want to talk about movies, actors,

directors, etc., not about specific instances as in RDF, but about classes. A

class in this sense is something similar to a class in a conventional program-

ming language.

In RDFS it is also possible to restrict properties by specifying a range,

i.e. the classes of resources and values to which the property applies.

Top-level classes are rdfs:Class, rdf:Property, rdfs:Resource, rdfs:Literal,

rdf:Statement. In RDF the predicate rdf:type is used to relate instances

to the classes these belong to.

Hierarchies

A TV show and a movie are both film productions. But there might be

properties that can be applied exclusively to the first and not to the second,

e.g. seasons or number of episodes, or vice versa. As in classic programming

languages it is possible to model a hierarchy of classes by means of inher-
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itance. Hierarchy is not a concept exclusive for classes. In RDFS is also

possible to define hierarchical relationships between properties. In order to

define subclasses and subproperties these are some of the predicates that

can be used: rdfs:subclassOf, rdfs:subPropertyOf.

In some cases the concept of inheritance is not precise enough to describe

the nature of an object. Assume one wants to model a movie cast. This

is clearly defined by the members of the cast, but an actor himself is not

(a subclass of) a cast. To define a group of objects in RDFS one can use

RDF containers or RDF collections. A not exhaustive list of predicates is:

rdf:Alt, rdf:Seq, rdf:Bag, rdf:nil, rdfs:List, rdfs:Container.

2.1.4 SPARQL Protocol and RDF Query Language

SPARQL is the query language recommended by the W3C to query against

an RDF dataset. The specification of SPARQL consists of three parts:

• SPARQL Query Language for RDF

• SPARQL Query Results XML Format

• SPARQL Protocol for RDF

The easiest example of a SPARQL query is probably the following:

(. . . PROLOG)

SELECT * WHERE { ?s ?p ?o }

This query retrieves a copy of the entire dataset with an SQL-like syntax.

The query starts with a PROLOG. This allows us to define prefixes for

namespaces, for instance8:

BASE <. . . /dataset.rdfs>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

The keyword BASE allows us to declare a base URI, which references a local

vocabulary. Its syntax SPARQL is also similar to N3 and shares some of its

abbreviation mechanisms. PREFIX is one of them.

SPARQL is based on graph pattern matching. In the previous example

?s ?p ?o corresponds to a triple where each of the RDF terms was replaced

8In this and the next examples, we skip the PROLOG, because our examples are not

vocabulary-dependent.
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with a variable. Therefore, any triple could fulfill the pattern. Suppose, for

example, that instead of that triple pattern one writes:

SELECT * WHERE { ?s rdf:type rdfs:Class . }

This query retrieves all classes.

The SELECT clause returns a projection of a subset of the variables used

in the WHERE clause. This can be followed by an optional clause FROM,

which specifies the location, inclusive of protocol, of the graph source against

which the query will be evaluated. If specified, this is the first clause evalu-

ated. Otherwise, it is assumed that the query is evaluated in some specific

local scope, e.g. within the bounds of a triple store. The clause WHERE

allows us to define the set of graph patterns that one wants to retrieve. Ad-

ditionally, one can specify filter conditions to filter out information from the

result.

It is important to mention, that a query that uses projection doesn’t

return a valid RDF graph, which is one the key design features. Since it

is possible to project an arbitrary number of variables, the result can be

seen as a set of tuples (mappings from variables to values) and therefore

materialized as a table where each column corresponds to a variable.

SELECT is not the only kind of query supported by SPARQL:

• ASK : returns true if there is at least one match in the graph, else false.

• CONSTRUCT : returns an RDF graph. It can be a subgraph (of the

original RDF graph) or a newly constructed graph. This makes the

language closed9, which is a desirable property.

• DESCRIBE : returns an RDF Graph that describes those resources

matched by the graph pattern of the query. It is up to the SPARQL’s

implementation to choose what triples are used to describe a resource.

The specification states that, “the DESCRIBE form returns a single

result RDF graph containing RDF data about resources. [...] The

description is determined by the query service.”

Some of the limitations of SPARQL 1.0 are its inability of updating oper-

ations (however, this is supported as an extension), the absence of cursors

9The result of the query is of the same kind of the input.
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to iterate over results, the lack of full-text search, etc. Moreover, some

RDF models were not supported such as RDF collections. With regards

to inference, SPARQL 1.0 provided only a guideline of how this should be

accomplished:

“The overall SPARQL design can be used for queries which assume a

more elaborate form of entailment than simple entailment, by re-writing the

matching conditions for basic graph patterns. Since it is an open research

problem to state such conditions in a single general form which applies to

all forms of entailment and optimally eliminates needless or inappropriate

redundancy, this document only gives necessary conditions which any such

solution should satisfy. These will need to be extended to full definitions for

each particular case.” [28].

On March 2013 SPARQL 1.1 [15] became a W3C recommendation. This

adds many new features including the possibility of doing updates, of us-

ing sub-queries, property paths, negation, aggregation, federation, (partial)

entailment and much more.

SPARQL also specifies a protocol to query a specific graph. An example

of the how the protocol works is the following10:

http://.../qps?

query-lang=http://www.w3.org/TR/rdf-sparql-query/

&graph-id=http://resparql.org/lastfm.rdf

&query=PREFIX foaf: <http://xmlns.com/foaf/0.1/..

2.2 Recommender System

The utility of recommender systems nowadays goes beyond its role of a sales

tool on e-commerce systems for which it was conceived. Today, every time

a Web user has to decide which products to buy, which news to read, which

places to sightsee, etc., he is overloaded with information, which makes the

process of taking the decision frustrating.

Recommender systems could help to reduce this complexity by filtering

out non-relevant information. Information based on users’ preferences could

be consequently highlighted for easy retrieval. Therefore, it would be bene-

ficial to integrate recommender systems as an online tool into the Web and

especially into the Semantic Web, but this has been achieved only partially.

10Source: http://www.dajobe.org/talks/200603-sparql-stanford/
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The remaining part of this section introduces the method of operation

of classic recommender systems. In order to produce suggestions a rec-

ommender system should have an approach to solve each of the following

problems:

• how to extract user preferences;

• how to extract features of items;

• how to represent the above mentioned features and compute similari-

ties;

• how to compute recommendations.

In the remaining of this section typical approaches will be described.

User preferences

Typically, a recommender system collects some information about user pref-

erences and has to deduce some other. These can be classified as follows:

• user’s personal information, e.g. local origin, spoken languages, age,

gender, education, etc;

• explicit ratings: a function r : (u, i)→ v ∈ R where u is a user, i is an

item and v is a numeric value that represents a degree of preference. It

is called explicit, because the user is required to (optionally) provide

the system with this information. The range and interpretation of

this value depends on the system, e.g. negative values could be used

to express dislike, we could have discrete or continue values, etc.;

• implicit ratings: deduced degree of preference gathered from observa-

tions of user behavior within the scope of the system, e.g. purchase

history, navigation history, time a user spends searching for a product,

etc. This kind of information might not be totally reliable, because

e.g. two or more users might have shared the same account or a user

might have forgotten to close an opened browser’s tab.

The system could prioritize the kind of information obtained and use con-

veniently one kind in absence of other.
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Item features

The features of a product are sometimes given, e.g. written by the manu-

facturer; sometimes the system has to deduce them. In some literature a set

of features is called a profile.

For instance, a profile of a movie could consist of the following features:

1. cast: set of actors in the movie;

2. director;

3. year of production;

4. genre;

Sometimes an item has only one value for a given feature, like budget or

date of premiere. Sometimes it has multiple values, e.g. a movie cast.

In order to determine the features of an item when these are not given,

classic Information Retrieval techniques are used. For instance, if a specifi-

cation which describes a product is available, representative terms (words)

are selected and used as features. Here is a typical approach [5]:

• remove stop words from the document, e.g. “the”, “a”, “for”, etc.,

which carry only small information about the product;

• compute weighting measure

wi,j = TFi,j ∗ IDFi, (2.1)

where ti is a term appearing in document dj , TFi,j =
fi,j

maxzfz, j
is a

normalized term frequency (fi,j is the frequency of ti in document dj)

and IDFi = log
N

ni
is the inverse document frequency (N is the overall

number of documents and ni is the number of documents in which the

term ti appears);

• use the k terms with the highest score as the representative terms.

One could fix k for all items or make it proportional to the document

length.

Another classic technique consists in using classifier algorithms, e.g. Naive

Bayes, to perform a soft clustering, i.e. each item is assigned to one or more
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classes. In this case each class is seen as a feature’s value, e.g. “drama

movie”. Naive Bayes is a semi-supervised algorithm, i.e. it needs a training

set in order to predict the class or classes to which an item belongs.

Naive Bayes’ probabilistic model assumes that each term in the docu-

ment is independent from all other terms in a document, but this is clearly

unrealistic. For instance, the description of a smartphone could have words

like “battery life” or “full HD” in which one can easily see that these terms

are dependent in probabilistic terms.

Note that these techniques are not limited to find item features, but can

also be applied to retrieve user traits or user preferences11 as well.

Representation of features and similarities

Since one of the core problems within a recommender system consists in

computing similarities between two items or users, the representation must

lead to an efficient computation. Let SIMfeat={f1,f2,...,fn}(obji, objj) be a

function that computes the similarity of two objects, obji and objj , given a

set of features {f1, f2, ..., fn}. This function returns a score which is propor-

tional to the degree of similarity of the two objects. For instance, the next

function computes the similarity between two movies based on their genres:

SIMfeat={genre}(movie1,movie2)

There exists some approaches in classic recommender systems which re-

turn a similarity score for one feature:

• Jaccard distance: each object has its own set of features values, e.g.

object A = {red, white, blue}, object B = {red, green}. The similarity

is calculated with the following formula:

djaccard =
|A ∪B| − |A ∩B|

|A ∪B| (2.2)

• cosine distance: each object has its own vector of feature values. A and

B are now two vectors, A = 〈red,white, blue〉 and B = 〈red, green〉.
The formula

cos ang(v1, v2) = •(v1, v2) / ‖v1‖2.‖v2‖2, (2.3)

11For instance, using a description field from a blog or a social network.
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where • is the dot product between two vectors and ‖vi‖2 is the l2−
norm, returns a value between 0 and 1.

• Pearson correlation: it is similar to cosine distance but measures the

degree to which a linear relationship exists between two variables.

In ReSPARQL cosine distance is used to compute similarities. A concrete

example: suppose one wants to compute the similarity between the movies

“The Expendables” and “Escape Plan” based on their cast,

SIMfeat={cast}(“TheExpendables”, “EscapeP lan”). Suppose we have the

following vector of actors:

0 1 2 3 4 5 6 7 8 ...

Sylvester Arnold Jason Jet Faran Amy Sam Dolph Bruce ...

Stallone Schwarz. Statham Li Tahir Ryan Neil Lundgren Willis ...

We represent the two movies as follows12:

The Expendables (v1):

0 1 2 3 4 5 6 7 8 ...

1 1 1 1 0 0 0 1 1 ...

Escape Plan (v2):

0 1 2 3 4 5 6 7 8 ...

1 1 0 0 1 1 1 0 0 ...

Each cell contains a 1 at index i, if the actor at index i appears in the

movie, 0 if otherwise. The length of each vector is equivalent to the overall

number of actors, which is inconvenient. Therefore, in practice this repre-

sentation is avoided for space reasons; instead, a compact representation,

e.g. sparse matrix, is used where cells having 0s as values are omitted.

cos ang(v1, v2) = •(v1, v2) / ‖v1‖2.‖v2‖2 =
2√

62 + 52

In the example above, vectors were filled with binary values. But this

is not the only possibility. Positive integers representing the frequency of

values can be also used. For instance, let’s consider a vector that represents

the movies a user has seen. A frequency value, which represents the number

of times a user has seen a movie, is used instead of binary values.

12Values from 9 to n are all 0
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0 1 2 3 4 5 6 7 8 ...

The Escape The The ... ... ... ... ... ...

Expendables plan Godfather Hobbit ... ... ... ... ... ...

User1 (v1):

0 1 2 3 4 5 6 7 8 ...

1 0 4 1 0 0 0 0 1 ...

User2 (v2):

0 1 2 3 4 5 6 7 8 ...

0 0 2 0 0 0 1 0 0 ...

User1 has seen “The Godfather” 4 times whereas User2 has seen it only

2 times. In this case the cosine distance returns a fair similarity score as

well.

Our vector could also contain a third kind of values. Suppose that the

system not only knows the movies that a user has watched, but it has also

collected explicit user ratings. Calculating the similarity as above would be

inaccurate: two users might have watched the same movies but assigned

different ratings to them. Fortunately, cosine distance can be also applied

to vectors weighted by the rating value. For example if User1 saw the movie

1 and gave it a rating of 5, then the vector has a 5 at index 1.

When vectors are weighted, values are typically rounded or normalized

to produce more accurate results. For instance, normalization could be done

by subtracting the average rating of a user from each rating he does. This

transforms low ratings into negative numbers whereas high ratings remain

positive numbers.

There are other possible representations, but these depend on the system

and go beyond the scope of this work.

Computation of recommendations

Recommender systems are usually classified according to the technique used

to predict ratings. Independently of the kind of information collected and

available to the system, there are three classical approaches: content-based

filtering, collaborative filtering and hybrid approaches. Moreover, each ap-

proach can be subsequently classified into heuristic-based and model-based.

Since ReSPARQL is based on a heuristic approach, model-based approaches

won’t be covered here. They consist in building a probabilistic model from
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the underlying data using statistical learning and machine learning tech-

niques. Predicted ratings are, under this paradigm, probabilities of users

liking items.

2.2.1 Content-Based Filtering

Content-Based Filtering focuses on properties of items. Suggestions are

searched among the domain of items. Each user gets suggestions based on

how similar an item is to an item that user has already consumed and rated.

The degree of preference depends on the degree of similarity between two

items.

A heuristic-based approach could consist for instance in using the above

described similarity function that takes two items as input and a set of

features (a subset of the item’s profile) and returns a value representing

the degree of similarity (a value from 0 to 1). This method could not be

accurate enough if we only consider a consumption relationship between

user and item without taking the ratings into account. Otherwise, it could

happen that an item is recommended to a user, because this item is similar

to an item the user consumed but disliked. Whenever ratings are available

they should be used to provide more accurate suggestions.

If the features were obtained from description texts, e.g. by means of

TF-IDF, we can use cosine distance to predict the missing ratings. More

formally, let Prof(i) = {wf1 , wf2 , ..., wfn} be an item profile, obtained by

means of TF-IDF (w is a weighting function and fi is a term that describes

a feature). Analogously, let CBProf(u) = {wf1 , wf2 , ..., wfm} be the profile
of user u that describes the degree of preference of features fi. Then the

predicted rating r : (u, i) → v ∈ R can be computed using cosine distance

as follows:

r(u, i) = cos ang(−→w Prof(i),
−→wCBProf(u)) (2.4)

Content-based filtering is feasible only when the features are already

available in the system or if extraction of items’ features is possible. In some

domains it might be difficult to obtain and to extract features automatically,

e.g. for multimedia data. Another limitation of content-based systems is

that they cannot recommend items that are different from anything the

user has consumed before (overspecialization). This also has an impact
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on diversity and range of recommendations. Finally, new users cannot get

accurate recommendations due to the small number of ratings provided.

2.2.2 Collaborative filtering

Collaborative filtering focuses on the relationship between users and items.

We will distinguish two kinds of CF approaches: user-based and item-based

collaborative filtering. In general, CF algorithms operate on a set of users

U = {u1, u2, ..., un}, a set of items I = {i1, i2, ..., im}, and partial rating

functions r : (u, i) → v ∈ R, where u ∈ U and i ∈ I. The range of ratings

depends on the system.

A user-based collaborative filtering utilizes the ratings that users assign

to items in order to find a peer of like-minded users for each user, called

neighborhood. Within this neighborhood highly rated items can be recom-

mended. Two users are considered to be similar if they by trend consume

the same items and rate them in the same way.

The predicted rating r(u, i) is computed taking into account other ratings

in the neighborhood. Let Nu be the neighborhood of user u. The two most

common formulas are:

r(u, i) = c
∑

u′∈Nu

sim(u, u′) ∗ r(u′, i) (2.5)

r(u, i) = avg(r(u)) + c
∑

u′∈Nu

sim(u, u′) ∗ (r(u′, i)− avg(r(u′))) (2.6)

Both formulas have a normalization constant c, typically:

c =
1∑

u′∈Nu
sim(u, u′)

(2.7)

Moreover, avg(r(u)) is the average of ratings of user u. To calculate the

similarity between users, sim(u, u′), the two most common approaches are

cosine distance and Pearson correlation, but these are not the only option.

The first formula is much simpler, but it has a limitation. Suppose that user

u rates all movies with ratings 1, 2, 3, 4, ... and that a second user u′ rates

all with 2, 3, 4, 5, .... This could be simply due a different interpretation of

the scale of values. The second formula gives better similarity scores in this

case.
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An item-based collaborative filtering is simply the symmetrical approach,

i.e., we compute the neighborhood of items. The predicted ratings can be

computed as follows [13]:

r(u, i) = c
∑

i′∈Ni

sim(i′, i) ∗ r(u, i′)

c =
1∑

i′∈Ni
sim(i, i′)

CF recommenders suffer from the so called “cold problem”. When a

system is freshly started users have not consumed any item yet and no

ratings are available. The problem persists when new users and items are

added into the system. Another problem CF recommenders have is that a

high number of users in the system is required in order to produce good

quality recommendations.

2.2.3 Hybrid recommender systems

Hybrid recommender systems combine multiple recommendation techniques,

e.g. both approaches, content-based and collaborative filtering, to produce

recommendations. As mentioned in the previous sections, both approaches

have weaknesses and provide better results under certain circumstances.

Hybridization approaches can be implemented in many ways:

• independently calculating recommendations using the two approaches

individually and then combine the predicted ratings, e.g. using a linear

function or similar;

• implementing a collaborative approach that uses not only ratings but

also content-based profiles of the user;

• using collaborative approach to soft-cluster users and then applying a

content-based approach to each group;

• implementing a semantic that supports both, content-based and col-

laborative filtering.
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2.3 Recommendations on top of RDF graphs

In this section we will show that RDF graphs are a feasible input for rec-

ommender systems. We will present a short analysis of the kind of patterns

required for computing recommendations through a set of representative

RDF schemas. ReSPARQL does not require any schema, but, as we will

see, in order to produce recommendations the recommender system must be

instructed about the role of nodes. See chapter 3 for more details.

User and items

In order to provide recommendations, two classes of nodes have to be iden-

tified in the RDF graph: users and items. If these are missing, it is not

possible to compute recommendations. In practice, any class of nodes could

potentially assume both roles. Even one class of nodes having both roles

could be used, e.g. nodes representing persons could be used to recommend

friends. Moreover, there must be a path of length > 0 connecting the user

nodes to the item nodes. Let this path be the user-item path. This rep-

resents the user’s consumption or a user’s preference for an item. Without

this path both content-based recommendations and collaborative filtering

would not be feasible.

An example of a user-item path of length 1 and 2:

User Movie

knows

watches

User Rating

knows

hasRated ratedMovie
Movie

Figure 2.4: RDFS, user-item path of length 1 and 2.

It might also be possible to have multiple user-item paths, but not all of

these necessarily represent a positive preference. Let’s consider, for instance,

the following graph:
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User Movie

knows likes

hates

Figure 2.5: RDFS, two path between user and item.

Unless one wants to recommend movies, which users could particularly

dislike with a content-based approach (which could also be the case), the

path “likes” should be used instead of the path “hates”.

On the one hand, a content-based approach requires that item nodes

have features. These have to be represented in the RDF graph as a path

from the item nodes to the feature nodes, being the length of this path > 0.

The same applies to users’ features.

On the other hand, a collaborative approach requires ratings given by

users that describe the degree of preference towards an item. The rating

will be typically represented in RDF Graphs as a literal node. Because this

kind of rating is related to both user and items, in ReSPARQL this is called

user-rating node.

The user-rating nodes have to be reachable from the user nodes and this

path has to have at least one edge in common with the user-item path13.

User PersonalRating

knows

hasRated

hasRating

ratedMovie
Movie

rating

Figure 2.6: RDFS, users’ ratings.

The user-rating node is not the only kind of measure an item within

an RDF graph could have. Sometimes an item could have been rated not

by a single user, but by some entity representing a group of users. For

instance, a movie in Rottentomatoes14 has the so-called Tomatometer, which

13This implies that rating nodes are possible only when the user-item path is > 1.
14www.rottentomatoes.com
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shows the percentage of approved critics who have given the movie a positive

review. Aggregated user-ratings already available in the system belong to

this category, too. These kinds of ratings are called in ReSPARQL item-

ratings.

Item-ratings are represented by nodes reachable from the item nodes.

Moreover, the user-item path and the path from the item nodes to the item-

rating nodes must not have any edge in common.

Contextual information is information that usually describes the context

in which a user consumed a given product. In the context of movies, a user

could have seen a movie during the weekend, with friends, etc. This kind of

information is important to provide richer and more precise recommenda-

tions. This is located “between” the user and item nodes in the RDF graph,

i.e. the user-item path and the path from the user to the contextual nodes

have to share some edges:

User PersonalRating

knows

hasRated

hasGender hasGenre hasPubRatinghasRating
movieTimeaccompanied

ratedMovie
Movie

ratinggender genreage

timeprofession companion

publicRating

hasProfession

hasAge

Figure 2.7: RDFS, movies dataset, time and companion are contextual

nodes.

To conclude, a recommendation system on top of RDF requires:

1. user nodes representing users;

2. item nodes representing items;

3. the user-item path between these two entities;

Moreover, other nodes contained in the patterns mentioned above could

be used to compute recommendations or/and improve its accuracy:

1. feature nodes of items and users;

2. user-rating nodes or item-rating nodes;
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3. contextual nodes.

2.4 Related work

The idea of integrating semantic data models with recommender systems

imposes non-trivial challenges. These can be divided into two categories:

expressiveness and design of the system.

With regard to the first problem, it is highly desirable to have a language

capable of querying any kind of recommendations against any possible RDF

graph. However, recommendations are predictions and SPARQL has shown

itself to be incapable of expressing “imprecise” queries. This problem has

already been disclosed in areas such as Information Retrieval, where express-

ing advanced rankings over semantic metadata, e.g. rankings based on user

preferences, is subject to the same problem [26]. Some proposed solutions

consist in extending RDF query languages, e.g. RDQL [12] or SPARQL [31].

The second problem is related to the kind of architecture needed to

compute recommendations. In order to process big amounts of Semantic

Web data, typical approaches consist in bringing this data into other systems

like relational database systems [34, 30], OLAP-based systems [18], or Map-

Reduce systems [7]. However, implementing a recommender system in the

mapped model imposes limits on its flexibility and results in hard-coded

components difficult to reuse or adapt.

The idea of extending SPARQL for customizing recommendations is, to

the best of my knowledge, a novel approach. The remaining part of this

section will present the related work.

2.4.1 Recommendation engines for Linked Data

There is a wide spectrum of proposals of recommender systems tailored for

Linked Data15.

For instance, Policarpio et al. [25] designed a recommender engine with

the ability of computing collaborative filtering, content-based and hybrid

recommendations based on Linked Data. This approach uses RDF as the

15A project initially proposed by Tim Berners-Lee for large scale integration of data on

the Web [1]. Currently, this is constituted by a vast set of interlinked RDF open datasets

on the Web. This currently consists of over 19 billion of triples [2].
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input format and is able to augment the original data by creating and adding

further RDF triples, the recommendations computed, which can then be

reused to refine new recommendations.

Policarpio’s approach uses SPARQL as the query language to extract

data from RDF triplestore endpoints, i.e. its use is limited to information

extraction. The obtained result is then pre-processed and given as an input

to the recommendation computation module. This system was developed

assuming a distributed model (Hadoop / Map Reduce) and therefore has

the ability to work with large volumes of data. Mapper and Reducer of the

Hadoop’s job are dynamically generated after data retrieval. Two are the

approaches supported by the recommender system: item-based collaborative

filtering and content-based. Hybrid recommendations rely on the fact that

previous recommendations are stored in the data itself and therefore it is

possible to combine the results obtained.

The computation module is fixed within the system. For instance, in case

of collaborative filtering the module requires the following set of mappings

(user, movie, rating). The SPARQL query must project the variables in

exactly that order. For content-based recommendations the set of mappings

must have the items, to which the similarity function is applied, as the first

projected variable followed by the rest of features.

Although this approach achieves a good degree of integration, it still has

the inconvenient problem of using the computation module as a black box.

The module generates a job dynamically according to the kind of recom-

mendation algorithm (CB or CF filtering), but no more tuning possibilities

are offered. For instance, if one wants to change the way the neighborhood

of a user or item is computed, the module has to be reimplemented.

Retrieval and integration of data from multiple sources is not a triv-

ial problem. Therefore, some approaches focus on data acquisition [16],

whereas recommendations are computed with classic models, like vector

space model [20].

Other approaches use an ontology based model to enhance the semantics

of the recommender system, e.g. to enhance contextual information [10], to

represent the semantic distances between objects [22], or to simply represent

the data acquired [14].

However, in almost all cases recommender systems are fixed within a
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specific domain, ranging from music [22], books [24], movies [20], news [14]

or even suggestions of topics [32].

2.4.2 Special-purpose recommendation languages

Adomavicius et al. [4] proposed a novel special-purpose recommendation lan-

guage called REQUEST16, which accomplishes a multidimensional level of

expressiveness. REQUEST queries against a multidimensional model based

on the OLAP-paradigm to obtain recommendations and, therefore, it sup-

ports OLAP-like aggregation and filtering operations. Certainly, REQUEST

does not to exploit the knowledge of semantic data sources, but it was in-

spirational for designing ReSPARQL.

Adomavicius was the first to propose treating recommender systems as

inherent multidimensional entities. Indeed, the traditional two-dimensional

user/item paradigm is insufficient for “Context-Rich” applications:

“[. . . ] when recommending vacations to travelers, one would likely rec-

ommend a different vacation to a customer in the winter than in the summer,

i.e., the time-of-travel context is clearly important when making recommen-

dations. Similarly, when recommending groceries, a “smart” shopping cart

(Wade 2003) needs to take into account not only information about products

and customers, but also such information as shopping date/time, store, who

accompanies the primary shopper, products already placed into the shopping

cart, and its location in the store. Clearly, the two-dimensional paradigm of

classical recommender systems is less suitable for these applications.” [6]

The following example shows a multidimensional REQUEST query:

RECOMMEND Movie, Time TO User, Companion

USING MovieRecommender

RESTRICT User.Name=“Tom” AND

Time.TimeOfWeek=“weekend” AND

Companion.Type=“Girlfriend”

BASED ON PersonalRating

SHOW TOP 3

The support of multidimensional queries is a desirable property for recom-

mender systems. The keyword USING specifies the cube to be used as input.

16REQUEST is the acronym for REcommendation QUEry Statements.
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It is assumed that the ratings cube is fully pre-computed before users start

issuing recommendation queries.

This concludes the preliminaries.

32



Chapter 3
ReSPARQL’s specification

In order to provide an overview about the syntax and semantics of ReSPARQL,

a small dataset was designed based on the schema of fig. 3.1, here reported

again for the sake of completeness. Additionally, the formalized semantics

are presented in section 3.3.

User PersonalRating

knows

hasRated

hasGender hasGenre hasPubRatinghasRating
movieTimeaccompanied

ratedMovie
Movie

ratinggender genreage

timeprofession companion

publicRating

hasProfession

hasAge

Figure 3.1: RDFS of movies dataset (same as fig. 2.7).

3.1 Example: movies dataset

Intuitively, an RDF that complies with the schema in fig. 3.1 depicts a

scenario where users watch movies and rate them. This data, as seen in fig.

3.2, contains knowledge about three users and five movies.
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Bob

Eve

Alice

Man of Steel

The Hobbit

Gravity

Django

Unchained

The

Dictator

student

hasProfession

student

hasProfession

worker

hasProfession

male hasGender

male hasGender

female hasGender

30
hasAge

hasRate
d

hasRated

hasRated

hasRated

hasRated

hasRating

hasRating

hasRating

hasRating

hasRating

hasRatin
g

hasRating

hasRating

hasRating

hasRating

ratedMovie

ratedM
ovie

rated
M

ovie
rated

M
ovie

ratedMovie

ratedMovie

ratedMovie

ratedMovie

ratedMovie

ratedMovie
ratedMovie

ratedM
ovie

rate
dMovie rated

M
ovie

hasRated

hasRated

hasRated

hasRated

hasRated
hasRated

hasRated

hasRated

27
hasAge

30
hasAge

Peru

USA

use
rC

ountr
yuserCountry

Peru
userCountry

Italy
userCountry

Peru

use
rC

ountr
y

Rating_1

Rating_2

Rating_3

Rating_4

Rating_5

Rating_7

Rating_8

Rating_9

Rating_10

Rating_11

Rating_12

Rating_13

Rating_6

6.0

8.5

9.0

8.0

7.5

5.0

9.5

10

6.5

8.0

4.0

action adventure

fantasy

7.4hasPublicRating

hasGenrehasG
enre

h
a

sG
e

n
re

adventure

fantasy

8.0
hasPublicRating

hasGenrehasGenre

drama

sci-!

8.4

hasPublicRating

hasGenrehasGenre

thriller

hasGenre

adventure

drama

8.5

hasGenre

hasGenre

hasGenre

comedyhasGenre

6.4hasPublicRating

8.5

Figure 3.2: Movies dataset

3.2 Syntax and Semantics through examples

The syntax of ReSPARQL was designed in conformance to the principles

stated in the specification of SPARQL 1.1. The designing goals were based

on two pillars:

• keeping the language as close as possible to SPARQL, i.e. the query

language should be able to retrieve data by matching graph patterns

against RDF graphs;

• being intuitive enough to make the recommendation process transpar-

ent to the user;

In this section the syntax of ReSPARQL and the approach for computing

the recommendations will be presented through a set of examples.
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3.2.1 Basics

The basic example of a content-based ReSPARQL query is the following:

1 PREFIX resparql: <http://example.org/resparql#>

2 PREFIX movies: <http://examples.org/movies/>

3 RECOMMEND ?user ?movie.REC ?RATING

4 WHERE {

5 ?user rdf:type resparql:User .

6 ?movie rdf:type resparql:Item .

7 ?user movies:hasRated ?personalRating .

8 ?personalRating movies:ratedMovie ?movie .

9 }

10 BASED ON {

11 ?movie movies:hasGenre ?genre

12 }

Table 3.1: ReSPARQL content-based query that recommends movies similar

in their genres to movies that the user has already watched.

The purpose of this query is to recommend movies similar in their gen-

res to movies that the user has already watched (RECOMMEND ?user

?movie.REC ).

Just as SPARQL, ReSPARQL starts with a prolog (lines 1 and 2) which

allows a user to declare base URIs or namespaces prefixes. Another clause

both languages have in common is WHERE. This allows specifying the pat-

tern to be matched against the RDF graph. The resulting matched infor-

mation is the input of the recommender system. In the example above we

have four triple patterns (lines 5-8). However, in contrast to SPARQL the

triple patterns in lines 5 and 6 are discarded in the process of building the

graph pattern and therefore, these are not matched.

ReSPARQL does not rely on RDFS or meta-data describing the RDF

graph and therefore, it is necessary to instruct the system about the roles

of variables in the query. More concretely, we have to let the system know

which variable represents users and which one represents items we aim to

recommend. This can be expressed in the ReSPARQL Type Pattern (RTP),

a special graph pattern within the WHERE clause. In our example the

triple patterns in lines 5 and 6 form the RTP and generally triple patterns
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to which a type within the “resparql” namespace1 is assigned by means of the

property rdf:type. In the example above ?movie of type resparql:Item is the

sought recommended item whereas ?user of type resparql:User represents

the users. The mechanism implemented by the RTP makes possible to avoid

solutions applied in other recommender systems such as [25] where otherwise

the order of variables is fixed, e.g. the first projected variable represents the

users, the second the items, etc.

WHERE is followed by a ReSPARQL-specific clause, BASED ON. De-

spite the resemblance with WHERE, the purpose of BASED ON is to in-

struct the recommender about how to accomplish its task. The triple pat-

terns herein defined, specify the set of attributes that the system has to take

into account to compute the recommendations. Altogether this basic graph

pattern is called ReSPARQL System Pattern (RSP).

In the example above, line 11, the only triple pattern specified, represents

the attribute “genre” of a movie. Since the roles of variables have been

specified in the RTP, the system is now able to understand that ?genre is

a feature of a movie. To represent a single attribute one or more of these

(concatenated) triple patterns could be needed. A set of triple patterns

representing one feature is called Feature Graph pattern (FGP). Let TPB be

a triple pattern from the BASED ON clause. The following property holds:

TPB ⊆ FPG ⊆ RSP

Each FGP has to start with either a user variable, e.g. ?user, or an item

variable, e.g. ?item. One query cannot contain FGPs that refer to both

users and items. Depending on the kind of FGPs provided the recommender

system performs either a user-based recommendation or an item-based rec-

ommendation. Moreover, the systems automatically decides to process the

data using a content-based or collaborative filtering approach. Given the

FGP specified in the example, an (item) content-based approach will be

used to recommend movies.

In ReSPARQL, there are two different types of variables. The first type

corresponds to variables used within the WHERE clause. Like in SPARQL

these can be projected using the RECOMMEND clause, which has almost

the same role as SELECT, i.e. projection. In our example ?user, ?person-

1The URL http://example.org/resparql# is used only for illustrative purposes.
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alRating and ?movie belong to this category. The second type of variables

are ReSPARQL-specific. It consists of renamed variables and reserved score

variables. On the one hand, there’s a corresponding renamed variable for

each variable within the WHERE clause, which has the same name as the

original variable with the string .REC appended to the end. These renamed

variables represent the recommended items and information directly linked

to them in the RDF-graph. Now it should be clear what the difference

between ?movie and ?movie.REC is: the first one represents movies that

a user has actually seen, whereas ?movie.REC represents potential recom-

mended movies. On the other hand, ReSPARQL has two reserved score

variables, ?SIMscore and ?RATING. ?SIMscore, represents the computed

similarity value of two objects, whereas ?RATING, which gives insight to

the predicted rating of a recommendation.

The computation of similarities is central for understanding the seman-

tics of ReSPARQL, so it is worth to take a closer look. In section 2.2 a

similarity function was defined. In our example, we are interested in finding

similarities between pair of movies, for instance in computing the score:

SIMfeat={genre}(Man of Steel, The Hobbit)

?SIMscore is the variable to which the similarity score is mapped. In the

movies dataset there are five movies and each movie can have more than

one genre. As the table 3.2 shows, each movie is represented as a vector of

genres2 and in order to compute similarities the cosine distance is used:

action advent. fantasy drama sci-fi thriller comedy

Man of

Steel

1 1 1 0 0 0 0

The

Hobbit

0 1 1 0 0 0 0

Gravity 0 0 0 1 1 1 0

Django 0 1 0 1 0 0 0

The

Dictator

0 0 0 0 0 0 1

Table 3.2: Movies represented as vectors of genres.

Cosine distance returns a value between 0 and 1. Now we know that:
2One task of the recommender system is to build this vectors.
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SIMfeat={genre}(Man of Steel, The Hobbit) = 0.816 = µ(?SIMscore)3

If more than one feature is provided, this process is repeated for each

feature and then the final similarity score is averaged.

SIMfeat={f1,f2,...,fn}(obji, objj) =

∑n

k=1
SIMfeat={fk}(obji, objj)

n

Note that all objects matched at least once for one of the features will be

considered. Similarities are computed for all possible pairs and hence a cross

product is required. Independently of the number of features considered, the

BASED ON produces a solution mapping of the form:

?movie ?movie.REC ?SIMscore

Man of Steel The Hobbit 0.816...

... ... ...

At this point the input data retrieved by evaluating the graph pattern

in the WHERE clause is joined twice with the solution mapping above,

once on ?movie and once on ?movie.REC (the above described renaming is

applied). This process is better illustrated in the following figure:

Bob Gravity

Similarity_iRating_1

AliceElysium

Rating_3

...

...

......
...
......

... ...
...
... ...

...

0.816...

Gravity... ... ...

Bob

...
...
......

...

?movie?user

0.816...

?SIMscore

Elysium Alice

...
...
... ...

...

?movie.REC ?user.REC

Figure 3.3: Joins between input data and two similar movies in query of

table 3.1.

The dashed nodes are not part of the data, but they were added to depict

the idea of the process of computing similarities. The figure shows also the

renaming strategy of variables adopted.

The resulting set of mappings before the projection is illustrated in ta-

ble 3.3.

3µ(v), where v is a variable, is the value mapped to v. This notation is used in

SPARQL algebra, as will be shown in section 3.3
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?user ?movie ?movie.REC ?SIMscore ?user.REC

Bob Man of Steel

The Hobbit 0.816... Eve

Gravity 0
Bob

Eve

Django 0.408...

Bob

Eve

Eve

Alice

Alice

The Dictator 0
Eve

Alice

Bob Gravity

Man of Steel 0 Bob

The Hobbit 0 Eve

Django 0.408...

Bob

Eve

Eve

Alice

Alice

The Dictator 0

Bob

Bob

Eve

Alice

Bob Django

Man of Steel 0.408... Bob

The Hobbit 0.5 Eve

Gravity 0.408...
Bob

Eve

The Dictator 0

Bob

Bob

Eve

Alice

Bob The Dictator ... ... ...

Bob ... ... ... ...

Eve ... ... ... ...

Table 3.3: Solution mappings for query in table 3.1 previous to the projec-

tion.

As table 3.3 shows, for only five movies the user “Bob” has gotten many

results due to the cross product between items and further joins. However,
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this complexity is manageable. There’s a way to reduce the size of the

mappings and this can be achieved by applying filters. For instance, the

following filter states that we are interested in movies whose similarity score

is at least 0.5:

FILTER (xsd:double(?SIMscore) >= 0.5)

The resulting set of mappings after applying the filter is the following:

?user ?movie ?movie.REC ?SIMscore ?user.REC

Bob Man Of Steel The Hobbit 0.816... Eve

Bob Django The Hobbit 0.5 ... Eve

Table 3.4: Filtered solution mappings for query in table 3.1.

Further ways of reducing both the size of input data and the neighbor-

hood of users/items can be found in section 3.2.7.

In regard to the computation of ?RATING, the variable to which the pre-

dicted rating is mapped, is not shown in the previous tables, further details

will be provided in section 3.2.5 about how to compute this value. ?RAT-

ING is a linear function that takes into account ?SIMscore, but also other

measure parameters if these are specified in the system. In this example

?RATING simply coincides with ?SIMscore.

The fact that an item is recommended multiple times is an expected and

reasonable behavior of recommender systems. In table 3.4 the movie “The

Hobbit” is recommended twice because of its similarity to two other movies

“Man Of Steel” and “Django”. These results can then be packed in differ-

ent ways. For instance, one could project ?user, ?movie and ?movie.REC

to show the reason for which a movie was recommended (to which movie

?movie.REC is similar). Another approach could be to project a unique

pair (user, recommended item) taking into account only the maximum pre-

dicted rating obtained. This can be achieved by means of GROUP BY and

aggregations functions, as we will see in 3.2.6.

The semantics for (user) content-based recommendations are quite sim-

ilar. The requirement is that, as explained above, all FGPs refer to users.

Let’s consider for instance the following query:
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1 PREFIX resparql: <http://example.org/resparql#>

2 PREFIX movies: <http://examples.org/movies/>

3 RECOMMEND ?user ?movie.REC ?RATING

4 WHERE {

5 ?user rdf:type resparql:User .

6 ?movie rdf:type resparql:Item .

7 ?user movies:hasRated ?personalRating .

8 ?personalRating movies:ratedMovie ?movie .

9 }

10 BASED ON {

11 ?user movies:userCountry ?country

12 }

Table 3.5: ReSPARQL content-based query that recommends movies from

other users similar in their origin.

The purpose of the query is to obtain recommended movies from other

users similar in their origin. The origin is in this case represented by the

FGP in line 11. We are considering here a content-based property of the

user’s profile and therefore, the focus of the similarity computation changes.

As before, we can imagine each user is represented as a vector of countries:

Peru USA Italy

Bob 1 1 0

Eve 1 0 0

Alice 0 0 1

Table 3.6: Users represented as vectors of countries.

The intermediate results are again used to join the input data.

?user ?user.REC ?SIMscore

Bob Eve 0.707...

... ... ...

The following figure illustrates how information is joined for a pairs of

compared users. By joining the input data with the intermediate similarity

mappings, each user is linked to the movies of a similar user:
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Bob

Similarity_i

Eve ......
...
......

...

0.70..

Bob

...
...
......

...

?user

0.70..

?SIMscore

Eve ... ...

?user.REC

Rating_6 The HobbitThe Hobbit

?movie.REC

Figure 3.4: Joins between input data and two similar users in query of table

3.5.

As before, ReSPARQL computes all possible results unless filters are

specified within the query. The set of mappings is defined over the same set

of variables, however, the mappings are evidently different.

In this kind of queries an item a user has consumed, e.g. ?movie, doesn’t

really play a role in a (user) content-based recommendation approach, but

this information is kept until the end in case filters are applied to it. Also

in this case the predicted rating, ?RATING, coincides with ?SIMscore.

The table 3.7 represents the solution mappings previous to the projec-

tion.

?movie ?user ?user.REC ?SIMscore ?movie.REC

Man of Steel Bob

Eve 0.70...

The hobbit

Gravity

Django

The Dictator

Alice 0.5

Django

Django

The Dictator

... ... ... ... ...

Table 3.7: Solution mappings for query in table 3.5 previous to the projec-

tion.
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3.2.2 Improvement of the predicted ratings

In order to improve the accuracy of recommendations it is possible to specify

ratings of different kinds in ReSPARQL by means of RTP. As seen in section

2.3, two kinds of measure functions are considered in this work:

• user-ratings: explicit ratings that users give to items.

• item-ratings: public available ratings for items, given by an external

entity.

The MEASURES clause allows us to specify the nodes that represent

those ratings and to match the graph patterns containing that information,

which is in turn given as input to the recommender system.

The following outline illustrates the use of this clause:

PREFIX resparql: <http://example.org/resparql#>

RECOMMEND ?user ?item.REC ...

WHERE { ... }

BASED ON { ... }

MEASURES {

?userRating rdf:type resparql:UserRating .

?itemRating rdf:type resparql:ItemRating .

#exemplary graph patterns

?personalRating [...]:hasRating ?userRating .

?item [...]:hasPublicRating ?itemRating .

}

Table 3.8: Outline of a ReSPARQL query that uses MEASURES.

As in WHERE, the RTP in the MEASURES clause instructs the rec-

ommender about the roles of the variables ?userRating and ?itemRating :

resparql:UserRating is the ReSPARQL class to assign a user-rating role,

whereas the resparql:ItemRating corresponds to item-ratings. Neither RTP

in MEASURES is matched against the RDF graph.

The remaining triple patterns in MEASURES are joined with those de-

clared in the WHERE clause and for each variable therein declared there is

also a correspondent renamed variable (.REC). In section 3.2.5 we will see

how this metrics are used to compute the ratings.
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3.2.3 Content-based and collaborative filtering

Thus far two examples of content-based queries, a user-based and an item-

based query, were presented in tables 3.1 and 3.5. Whenever FGPs are

provided, which are exclusively related to properties of users and items

(profiles), the recommender system uses a content-based approach. For a

collaborative approach it is instead required that one of the FGPs represents

the user-item path (see section 2.3 for its definition). The following is an

example of a collaborative filtering query based on the movies dataset:

1 PREFIX resparql: <http://example.org/resparql#>

2 PREFIX movies: <http://examples.org/movies/>

3 RECOMMEND ?user ?movie.REC ?RATING

4 WHERE {

5 ?user rdf:type resparql:User .

6 ?movie rdf:type resparql:Item .

7 ?user movies:hasRated ?personalRating .

8 ?personalRating movies:ratedMovie ?movie .

9 }

10 BASED ON {

11 ?user movies:hasRated ?personalRating .

12 ?personalRating movies:ratedMovie ?movie .

13 }

Table 3.9: ReSPARQL collaborative filtering query that recommends

movies.

The purpose of the query is to recommend movies from like-minded users,

who tend to watch the same movies. The FGP in lines 11 and 12 represents

the user-item path. Certainly, the symmetrical case is allowed too: a path

from item nodes to user nodes can be also provided and this results in an

item-based collaborative filtering4.

The query in table 3.9 shows also the difference between WHERE and

BASED ON. Although both clauses contain the same triple pattern (lines

7-8, respectively lines 11-12), the first one is used to match the input data,

whereas the second one, the RSP, specifies the criteria used to find similar

4Our dataset does not contain such a path and therefore item-based CF queries are

not possible. This is one limitation of the language. In the section future work, 5.1, will

be discuss a possible approach to solve this problem.
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users. In this concrete example the system computes the similarity of users

represented as vectors of the movies they watched. The vectors are filled

with frequency values, which in this case represents the number of times a

user watched a certain movie. If one wants to consider also the ratings that

users assigned to movies, the following information has to be provided:

• an FGP containing the path from user nodes to user-rating nodes.

• a variable of type resparql:UserRating ;

This information is respectively provided in lines 13-14 and line 17 of the

following query:

1 PREFIX resparql: <http://example.org/resparql#>

2 PREFIX movies: <http://examples.org/movies/>

3 RECOMMEND ?user ?movie.REC ?RATING

4 WHERE {

5 ?user rdf:type resparql:User .

6 ?movie rdf:type resparql:Item .

7 ?user movies:hasRated ?personalRating .

8 ?personalRating movies:ratedMovie ?movie .

9 }

10 BASED ON {

#FGP 1

11 ?user movies:hasRated ?personalRating .

12 ?personalRating movies:ratedMovie ?movie .

#FGP 2

13 ?user movies:hasRated ?personalRating .

14 ?personalRating movies:hasRating ?userRating .

15 }

16 MEASURES {

17 ?userRating rdf:type resparql:UserRating .

18 ?personalRating movies:hasRating ?userRating

19 }

Table 3.10: ReSPARQL collaborative filtering query that recommends

movies using ratings.

The purpose of the query is now to recommend movies from like-minded

users, who tend to watch the same movies and to rate them in a similar way.

With the new information the system can weight the vectors by multiplying
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the ratings to the frequency values. Cosine distance is also applied in this

case. Note that both the content-based and the collaborative approaches

use the same cosine measure. However, in the content-based case, it is used

to measure the similarity between vectors of feature values, whereas in the

collaborative case, it measures the similarity between vectors of the actual

user-specified ratings.

3.2.4 Hybrid approach

In ReSPARQL it is possible to incorporate some content-based characteris-

tics into the collaborative filtering approach by considering information from

users’ profiles. By doing so, ratings would then not be the only similarity cri-

teria considered, and therefore the similarity score would be averaged over all

considered features. Consequently, better results are obtained with respect

to a pure collaborative approach in cases in which only a few pairs of users

have a significant number of commonly rated items (sparsity problem [5]).

1 PREFIX resparql: <http://example.org/resparql#>

2 PREFIX movies: <http://examples.org/movies/>

3 RECOMMEND ?user ?movie.REC ?RATING

4 WHERE {

5 ?user rdf:type resparql:User .

6 ?movie rdf:type resparql:Item .

7 ?user movies:hasRated ?personalRating .

8 ?personalRating movies:ratedMovie ?movie .

9 }

10 BASED ON {

11 ?user movies:hasRated ?personalRating .

12 ?personalRating movies:ratedMovie ?movie .

13 ?user movies:hasGender ?gender .

14 ?user movies:hasProfession ?profession .

15 }

16 MEASURES {

17 ?userRating rdf:type resparql:UserRating .

18 ?personalRating movies:hasRating ?userRating

19 }

Table 3.11: ReSPARQL hybrid query that recommends movies using ratings

and content-based profile.
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The purpose of the query is to recommend movies from like-minded

users, who tend to watch the same movies, but that are also similar in their

gender and professions. Three FGPs are specified in this query: the first

one represents the user-item path, the second and third belong to the user’s

profile.

3.2.5 Computation of predicted ratings

A predicted rating is a linear function of the similarity score and the explicit

ratings or metrics specified through the RTP.

Let’s assume that the system is aware of the following information:

?user resparql:User

?item resparql:Item

?userRating resparql:UserRating

?itemRating resparql:ItemRating

Table 3.12: Example of RTP configuration.

To simplify the illustration formulas, variables that represent the values

of certain mappings will hereinafter be used:

• u = µ(?user);

• u′ = µ(?user.REC);

• i = µ(?item);

• i′ = µ(?item.REC);

• r(u, i) = µ(?userRating);

• r(u′, i′) = µ(?userRating.REC);

• r(i) = µ(?itemRating);

• r(i′) = µ(?itemRating.REC);

• sim = µ(?SIMscore), can be sim(u,u′) or sim(i,i′) depending on the

kind of approach triggered (user-based or item-based).
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Ratings for a CB query

In case all variables are available on each solution mapping, then we aim to

calculate r(u, i′):

r(u, i′) =

(r(u, i) + r(i))

2
+ sim(i,i′) ∗

(r(u′, i′) + r(i′))

2
2

(3.1)

In case item-ratings are missing or not provided:

r(u, i′) =
r(u, i) + sim(i,i′) ∗ r(u′, i′)

2
(3.2)

In case neither user-ratings nor item-ratings are provided:

r(u, i′) = sim(i,i′) (3.3)

Ratings for a CF query

In case all variables are available on each solution mapping, then we aim to

calculate r(u, i′):

r(u, i′) = sim(u,u′) ∗
(r(u′, i′) + r(i′))

2
(3.4)

In case item-ratings are missing or not provided:

r(u, i′) = sim(u,u′) ∗ r(u′, i′) (3.5)

In case neither user-ratings nor item-ratings are provided:

r(u, i′) = sim(u,u′) (3.6)

Finally, we assign the following value to the reserved variable

?RATING←− r(u, i′) (3.7)

3.2.6 Grouping capability

The language leaves a great degree of freedom for packing the results. This

is achieved by means of the grouping capabilities and aggregation functions

inherited from SPARQL.

The following two queries show different strategies to pack the results. In

the outline in table 3.13 each user gets, for each item, the recommendation

with the highest score. In the outline in table 3.14 results are averaged.
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PREFIX resparql: <http://example.org/resparql#>

RECOMMEND ?user ?item.REC (MAX(xsd:double(?RATING)) AS ?rating)

WHERE {

?user rdf:type resparql:User .

?item rdf:type resparql:Item .

#path from user node to item node

?user . . . ?item .

#set one or more filters to tune results

FILTER ( . . . )

}

BASED ON {

#item features

?item [...]:.. ?feat1 .

... .

?item [...]:.. ?featn .

}

GROUP BY ?user ?item.REC

Table 3.13: Outline of CB filtering query where only the highest rating for

each user and recommended item is shown.

PREFIX resparql: <http://example.org/resparql#>

RECOMMEND ?user ?item.REC (AVG(xsd:double(?RATING)) AS ?rating)

WHERE {

?user rdf:type resparql:User .

?item rdf:type resparql:Item .

#path from user node to item node

?user . . . ?item .

#set one or more filters to tune results

FILTER ( . . . )

}

BASED ON {

#path from user node to item node

?user [...]:.. ?item

}

GROUP BY ?user ?item.REC

Table 3.14: Outline of CF query where ratings are averaged for each pair of

user and recommended item.
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In addition to GROUP BY one can also use HAVING to filter out some

groups:

RECOMMEND ?user ?movie.REC

(AVG(?RATING) AS ?avgRat)

...

GROUP BY ?user ?movie.REC

HAVING (?avgRat > 8.0)

Table 3.15: Use of HAVING clause in ReSPARQL.

Arbitrary aggregation functions can be applied to the predicted ratings

or in general to any score of the solution mappings5. The heuristic function

changes depending on the kind of aggregation performed. For instance, let’s

assume that the rating is computed by means of the formula (3.2) from the

previous section and that one groups by ?user and ?item.REC. Let’s assume

moreover that the average of ?RATING is projected. The averaged rating

corresponds then to:

r(u, i′) =

∑
u′

r(u, i) + sim(i,i′) ∗ r(u′, i′)
2

| u′ | , (3.8)

where | u′ | is the number of users that rated the item i′.

3.2.7 Tailored neighborhood

ReSPARQL offers a great degree of flexibility that allows obtaining highly

parameterizable recommendations.

One of the novel features of ReSPARQL is that it is possible to apply

filters to both data within the RDF graph and recommended data. This

helps to reduce the size of the neighborhood of users or items [13] and have

consequently a big impact on the size of returned set of mappings. An

example is given by the following fragment:

5A comprehensive list of aggregation functions supported in SPARQL 1.1 can be found

in http://www.w3.org/TR/sparql11-query/#rAggregate
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FILTER ( ?age >= ?age.REC - 5 ||

?age <= ?age.REC + 5 )

Table 3.16: Neighborhood reduction through filters.

Assuming that the variable ?age represents the age of a user and that

this fragment is part of a CF query, then we are reducing the neighborhood

of each user by considering users five years younger or older.

Similarly, it is possible to filter the input data and recommended data.

By excluding certain users or recommendations from the results, aggregated

ratings are also affected:

FILTER (xsd:double(?itemRating.REC) > 7.5 &&

xsd:integer(?age) >= 18 )

Table 3.17: Filter on input data and recommended data.

3.2.8 Beyond user-item recommendations

The projection of variables is not necessarily limited to projecting user and

recommended item. As in SPARQL, all variables within the WHERE clause

can be projected in the RECOMMEND clause. Additionally, it is possible

to project all renamed variables. Therefore, it is possible to project other

variables to obtain other kinds of recommendations. A concrete example

based on the movies dataset is given in table 3.18.

In this example we join more information to our solution in order to

project ?profession and ?genre.REC. Intuitively, we are interested in know-

ing what the recommended genre for a certain target group is.

In presence of contextual information, it is also possible to write more

specific queries, than the one we have seen previously. For instance, based

on the RDFS of the movies dataset we can set filters to produce recommen-

dations for a specific context.
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1 PREFIX resparql: <http://example.org/resparql#>

2 PREFIX movies: <http://examples.org/movies/>

3 RECOMMEND ?profession ?genre.REC (...AGG. FUNCTION on RATING)

4 WHERE {

5 ?user rdf:type resparql:User .

6 ?movie rdf:type resparql:Item .

7 ?user movies:hasRated ?personalRating .

8 ?personalRating movies:ratedMovie ?movie .

9 ?user movies:hasProfession ?profession .

10 ?movie movies:hasGenre ?genre .

11 }

14 BASED ON {

15 ?user movies:hasAge ?age .

16 ?user movies:userCountry ?nationality .

17 ?user movies:hasProfession ?profession

18 }

19 GROUP BY ?profession ?genre.REC

Table 3.18: ReSPARQL query that recommends the genre of a movie to a

target audience.

1 PREFIX resparql: <http://example.org/resparql#>

2 PREFIX movies: <http://examples.org/movies/>

3 RECOMMEND DISTINCT ?user ?movie.REC

?time.REC ?companion.REC ?RATING

4 WHERE {

5 ?user rdf:type resparql:User .

6 ?movie rdf:type resparql:Item .

7 ?user movies:hasRated ?personalRating .

8 ?personalRating movies:ratedMovie ?movie .

9 ?personalRating movies:movieTime ?time .

10 ?personalRating movies:accompanied ?companion

11 FILTER ( (?user = “Bob”) && (?time.REC = “weekend”)

12 && (?companion.REC = “partner” ) )

13 }

14 BASED ON {

15 ?movie hasGenre ?genre

16 }

17 MEASURES { ... }

Table 3.19: ReSPARQL query that recommends for a specific user within a

specific context.
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This last query returns recommendations, movies that other users have

seen in a specific context, for a specific user “Bob”.

ReSPARQL is based on SPARQL 1.1. This is a not exhaustive list

of the clauses supported by ReSPARQL: AGGREGATION FUNCTIONS,

GROUP BY, HAVING, DISTINCT, LIMIT, OFFSET, OPTIONAL, FIL-

TER, FILTER EXISTS, IN. A fragment of ReSPARQL grammar can be

found in Appendix A.

3.3 Semantics

This section expounds the formal semantics of ReSPARQL. The approach

here presented is based on [23], one of the first formalizations presented

which built the basis for the SPARQL 1.0 semantics. This described the

evaluation of a (simplified) fragment of SPARQL and hence it was not com-

plete, but provided a tool which was strong enough to analyze SPARQL

evaluation’s complexity6.

An exhaustive description of the current version of SPARQL’s semantics,

SPARQL’s 1.1, can be found in the specification of the language [15] (section

18: Definition of SPARQL).

3.3.1 SPARQL algebra and evaluation semantics

Some preliminaries notions of SPARQL’s algebraic syntax are here reported.

All these definitions can be found in [15, 23]:

• RDF-T (RDF-Terms) is a set I ∪ RDF-L ∪ RDF-B, where I is the

set of all IRIs, RDF-L is the set of all literals and RDF-B is the set of

all blank nodes in RDF graphs7.

• An RDF-Triple is a member of the set ∈ (I ∪ RDF-B) × I ×
(I ∪ RDF-B ∪ RDF-L).

• An RDF-Graph is a set of RDF triples.

6Evaluation of graph pattern in SPARQL is PSPACE-complete, whereas evaluation

of queries is coNP-complete.
7The sets I , RDF-B, and RDF-L are infinite and pairwise disjoint.

53



3.3. Semantics

• An RDF-Dataset is a set {G, (< i1 >,G1), (< i2 >,G2), . . . , (< in >

,Gn)} where G and each Gi are graphs, and each < ii > is an IRI.

Each < ii > is distinct. G is called the default graph. (< ii >, Gi) are

called named graphs.

• V is the set of query variables. It is infinite and disjoint from RDF-T.

• A TP (triple pattern) is a member of the set (RDF-T ∪ V ) × (I ∪ V )

× (RDF-T ∪ V ).

The syntax of SPARQL uses concatenation (.) and the operatorsOPTIONAL,

UNION , FILTER are used to construct graph patterns expression [23].

P is a graph pattern8 9 recursively defined:

• P is a TP

• If P1 and P2 are graph patterns, then expressions (P1 AND P2),

(P1 OPT P2), and (P1 UNION P2) are graph patterns too.

• If P is a graph pattern and F is a filter expression then the expression

(P FILTER F ) is also a graph pattern.

The following terminology allows us to introduce the semantics of graph

patterns expressions:

• µ is a solution mapping, a partial function µ : V → RDF-T. The

domain of µ, dom(µ), is the subset of V where µ is defined.

• Two solution mappings µ1 and µ2 are compatible if, for every variable

v ∈ dom(µ1) ∩ dom(µ2), then µ1(v) = µ2(v). Note that two mappings

with disjoint domains are always compatible.

• Given a mapping µ: V → RDF-T and a set of variables W ⊆ V ,

the restriction of µ to W , denoted by µ|W is a mapping such that

dom(µ|W ) = dom(µ) ∩ W and µ|W (?X) = µ(?X) for every ?X ∈
dom(µ) ∩W .

8In SPARQL’s documentation the following terminology is used instead: BGP (basic

graph pattern) corresponds to concatenation of triple patterns, GGP (group graph pat-

tern) are patterns grouped with “{}”, and AGP (alternative group pattern) corresponds

to UNION of triple patterns)
9Algebraic properties of graph patterns are defined in [23]
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• Ω is a multiset of solution mappings. We define the join of, the union

of, the difference and left outer join between Ω1 and Ω2 as:

– Ω1 ⊲⊳ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are compatible

mappings};
– Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2};
– Ω1 \ Ω2 = {µ1 ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ′ are not compatible};
– Ω1 ⊲⊳lo Ω2 = (Ω1 ⊲⊳ Ω2 ) ∪ (Ω1 \ Ω2) (left outer join).

• Since Ω is a multiset every mapping is annotated with a positive in-

teger that represents cardinality of that mapping, cardΩ(µ). If µ 6∈
Ω, then cardΩ(µ) = 0. The above defined operations do not discard

duplicates10.

The evaluation of a graph pattern P is a function ‖P‖G : P → Ω, where G

is an RDF-Graph. ‖P‖G is recursively defined as follows:

• If P is a TP , then ‖P‖G = {µ : V → RDF-T | dom(µ) = var(TP ) and

µ(TP ) ∈ G}, where var(TP ) denotes the set of variables occurring in

the components of TP and µ(TP ) is the set of triples obtained by

replacing the variables in TP according to µ;

• If P is (P1 AND P2), then ‖P‖G = ‖P1‖G ⊲⊳ ‖P2‖G;

• If P is (P1 OPT P2), then ‖P‖G = ‖P1‖G ⊲⊳lo ‖P2‖G;

• If P is (P1 UNION P2), then ‖P‖G = ‖P1‖G ∪ ‖P2‖G;

• ‖(P FILTER R)‖G = {µ ∈ ‖P‖G | µ satisfies R}.

In the next subsection, we will see how ReSPARQL queries can be evaluated.

This requires new definitions. For the sake of simplicity, we will assume that

the RDF-Graphs do not have blank nodes or literal subjects.

3.3.2 ReSPARQL algebra and evaluation semantics

A ReSPARQL query contains a special subset of triple patterns, whose pur-

pose it to provide the system with information about the role of variables.

These will be for convenience denoted as TPRTP .

10For the sake of brevity, we omit here how the cardinalities are updated when applying

an operator. This is explained in [8].
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• TPRTP ∈ V× (rdf:type)11 × (resparql:[...])12

As we know, these triple patterns are not matched against the RDF-Graph.

Therefore, we need to extend the definitions of the previous operators as

follows:

• If P is (P1 AND | OPT | UNION P2) and P1 and P2 are both triple

patterns TPRTP , then ‖P‖G = µφ, i.e. the mapping with empty do-

main13;

• If P is (P1 AND | OPT | UNION P2) and P1 is a TPRTP , then

‖P‖G = ‖P2‖G;

• If P is (P2 AND | OPT | UNION P2) and P2 is a TPRTP , then

‖P‖G = ‖P1‖G;

The information provided by the triple patterns TPRTP allows the recom-

mender to set four variables:

• vu ∈ V is the variable that represents users;

• vi ∈ V is the variable that represents items;

• vru ∈ V is the variable that represents user-ratings;

• vri ∈ V is the variable that represents item-ratings;

The evaluation of the BASED ON clause is the key of the computation of

recommendations. Let TPB denote the triple patterns appearing within this

clause.

• A TPB is a member of the set V × I × V .

• We define a way of accessing the two variables of which a TPB is

composed: TPB(s) is the variable on the left of the IRI and TPB(o)

is the variable on the right of the IRI.

11rdf ist the prefix of http://www.w3.org/1999/02/22-rdf-syntax-ns#
12resparql is the prefix of ReSPARQL’s namespace.

The URL http://example.org/resparql# is used only for illustrative purposes.
13µφ is compatible with any other mapping
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Let’s define now a special kind of graph pattern P called feature F . This is

defined recursively as follows14:

• P is a TPB. P is a feature F if P (s) = vu or P (s) = vi;

• P = (P1 AND P2) is a feature F if P1 is a feature, P1(o) = P2(s),

and P1 and P2 appear in that order within the BASED ON clause.

We say that P1 was extended by P2. Moreover, P (s) = P1(s) and

P (o) = P2(o).

We define the following function ν : (v → t,Ω, v′) → Γ, a multiset of

RDF-T terms (t, card(t)), which we call feature function, because it col-

lects all feature values of a given object. For instance, suppose one partic-

ular movie is represented by the mapping ?m → “TheHobbit”. We want

to obtain the feature genre represented by the variable ?g. We can then

apply the function ν1(?m → “TheHobbit”, Ω, ?g) and obtain the multiset

{(“adventure”, 1), (“fantasy”, 1)}. The second value of each element is the

cardinality of that element within the multiset.

Formally, ν1 consists of all RDF-T terms µ(v′) for which v → t ∈ µ and

µ ∈ Ω:

• ν1(v → t,Ω, v′) = {µ(v′) | µ ∈ Ω, v and v′ ∈ V, t ∈ RDF-T and

µ(v) = t}

The following function has a similar purpose:

• ν2(v → t,Ω, v′, r) = {(µ(v′), µ(r)) | µ ∈ Ω, v, v′ and r ∈ V, t ∈ RDF-T

and µ(v) = t}

As before the variable v′ represents a feature, whereas r represents a given

rating. The goal is to build a multiset of RDF-T terms ((t, r), card(t)). Note

that it is now the combination of both the RDF-T term and the rating which

defines the members of Γ.

Another function needed for the evaluation is the following:

• ζ : (Γ1,Γ2)→ [0, 1]

14Triple patterns TPB can be only concatenated. Therefore, other operators such as

OPTIONAL, UNION , FILTER, etc., will not be considered.
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Γ1 and Γ2 are two multisets of the same kind, i.e. either (t, card(t)) or

((t, r), card(t)). The goal of ζ is to compute similarities between two mul-

tisets and to return a value that represents the similarity degree (1 is the

max.). This can be achieved as follows:

• convert Γ1 and Γ2 into two sets by ignoring the cardinalities of elements

and then compute the Jaccard distance or;

• convert Γ1 and Γ2 into two vectors v1 and v2 and then compute the

cosine distance. The process of converting from multisets to vectors is

here described15:

– If Γ1 and Γ2 are both of kind (t, card(t)), then v1 and v2 have

each length = | Γ1∪Γ2 |. Assign an index to each of the elements

∈ Γ1∪Γ2. Finally, for each element of Γ1, set a 1 in v1’s cell at the

assigned index and repeat the process for Γ2 and v2. Optionally,

one can weight vectors by the cardinality of each element.

– If Γ1 and Γ2 are both of kind ((t, r), card(t)), then build two new

multisets Γ′
1 and Γ′

2. For each member of Γ1 having the same term

tk, collect all ratings ri and put into Γ′
1 the member (tk,

n∑

i=1

ri

n
).

Repeat the process for Γ2. Then use Γ′
1 and Γ′

2 to build two

vectors using the procedure described in the previous point and

weight them by the averaged rating.

Finally, we need to define a renaming operator. Given a multiset of mapping

solutions, Ω:

• ρ(?oldV arName:=?newV arName)(Ω): for each µ ∈ Ω, if ?oldV arName ∈
dom(µ) then that variable is renamed ?newV arName.

Since we will typically rename all variables, we also define the following

shortcut:

• ρ.REC(Ω): for each µ ∈ Ω rename each v ∈ dom(µ) by appending the

string “.REC” to the end of v.

15The similarity engine of ReSPARQL is based on the cosine distance approach.
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3.3. Semantics

Evaluation of Graph Patterns in the WHERE and MEASURES

clauses

The process of translating a ReSPARQL graph pattern into a ReSPARQL al-

gebra expression is akin to SPARQL: within the WHERE and MEASURES

clause, the revised recursive definition for triple patterns TPRTP , based on

union, join and left join is used to create a graph pattern.

After obtaining the graph patterns individually, we evaluate ‖PW AND PM‖G.

• Let be ΩWM , the multiset of mappings obtained from the evaluation

of ‖PW AND PM‖G.

Note that MEASURES is only an optional clause in ReSPARQL. If this is

not provided the evaluation of ΩWM is then the result of evaluating ‖PW ‖G.

Evaluation of Graph Patterns on the BASED ON clause

The evaluation of the BASED ON clause requires the notions formalized at

the beginning of this subsection.

In order to evaluate the graph patterns in the BASED ON clause, we need to

partition the set of triple patterns TPB into a set of features {F1, F2, ..., Fn′}
having the following properties:

• ∀i, Fi cannot be extended;

• each TPB ∈ to exactly one Fi;

• either Fi = vu,∀i or Fi = vi,∀i.

If these properties do not hold for the partition, then the whole evaluation

process is aborted.

Fi(s) and Fi(o) represent respectively the variable of objects to which

the similarities function is applied and the variable of features on which the

similarity is based.

We distinguish two kind of evaluations: user-based recommendation or

item-based recommendation. The first one is triggered when Fi(s) = vu,∀i.
The second, when Fi(s) = vi,∀i. Let the variable be:

vsim =




vu : if it is a user-based recommendation;

vi : if it is a item-based recommendation.
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• v̂sim = {vu, vi} \ vsim.

We search in the partition the following features:

• Fui: a feature whose Fui(s) = vu(vi) and whose Fui(o) = vi(vu);

• Fru: a feature whose Fru(s) = vu(vru) and whose Fru(o) = vru(vu).

If both features are found, we remove them from the partition and add

Prat = (Fui AND Fru). The initially found partition is otherwise used.

Suppose the resulting partition is ϕ = {[Prat], F1, F2, ..., Fn}.
We evaluate each of the features independently: {[‖Prat‖D], ‖F1‖D, ‖F2‖D, ..., ‖Fn‖D}

and obtain the following multiset of mappings: {[ΩPrat],ΩF1
,ΩF2

, ...,ΩFn}.
Now, we get the set of all RDF-T terms having at least one of the

features:

• σ = {
n⋃

i=1

(µ(Fi(s)) | µ ∈ ΩF i)
⋃
(µ(vsim) | µ ∈ ΩPrat)}

Since σ is a set, it has no duplicates of RDF-T terms. We will also use the

cross product operator, which is defined for sets.

• σ × σ = {(σi, σj) | σi, σj ∈ σ}.

For each pair of objects (σi, σj) and for each Ω ∈ ϕ, we compute the similarity

score:

scoreσi,σj ,F =





ζ(ν1(F (s)→ σi,ΩF , F (o))

ν1(F (s)→ σj ,ΩF , F (o))), if ΩF = ΩFk
;

ζ(ν2(vsim → σi,ΩF , v̂sim, vrui),

ν2(vsim → σj,ΩF , v̂sim, vrui)) if ΩF = ΩPrat

For each pair of terms, we calculate the average of all scores obtained by

considering different features:

scoreσi,σj
=

(
n∑

k=1

scoreσi,σj ,Fk
) + scoreσi,σj ,Prat

| ϕ | ;

Finally, we construct a multiset of mappings as follows:

• ΩB, the multiset of mappings obtained by evaluating the graph pat-

terns within the BASED clause.
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3.3. Semantics

• ΩB = {vsim → σi, vsim.REC → σj, ?SIMscore→ scoreσi,σj
| (σi, σj) ∈

σ}

Final evaluation

With the multiset of mapping solutions obtained from the different clauses

of the ReSPARQL query, it is possible to build the final result. Let ΩREC

be the resulting multiset:

• ΩREC = ΩMW ⊲⊳ ΩB ⊲⊳ ρ.REC(ΩMW )

ΩREC does not contain the predicted rating ?RATING. Given a µ ∈ ΩREC ,

this mapping is computed as described in 3.2.5. A new multiset of solution

mappings is built to incorporate the predicted rating.

• ΩReSPARQL = {µ | µ′ ∈ ΩREC , dom(µ) = {dom(µ′)∪?RATING},∀v ∈
dom(µ′), µ(v) = µ(v′) and µ(?RATING) is calculated as described}

This concludes the semantics of ReSPARQL.
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Chapter 4
Implementation

In order to evaluate ReSPARQL recommendation queries a standalone rec-

ommender repository as an extension to Sesame1 was designed and imple-

mented. This was achieved by extending Sesame’s Sail and Repository API.

The recommender repository will be hereinafter referred to as ReSPARQL

recommender.

The purpose of this chapter is to present the key features of the system

with a special focus on the following components:

• ReSPARQL’s pre-parser and parser;

• recommender repository;

• extended algebra operators;

• evaluation strategy for ReSPARQL queries;

• cache-system to optimize recommendations.

4.1 Sesame’s architecture

The system documentation of Sesame is not exhaustive. In order to imple-

ment a dedicated recommended repository the first task consisted in under-

1Sesame is an open source Java framework for storing, querying, and reasoning with

RDF and RDF Schema. It can be used as a database for RDF and RDF Schema, or as a

Java library for applications that need to work with RDF http://www.openrdf.org
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4.1. Sesame’s architecture

standing the role of components by analyzing the data flow and by studying

the javadoc API [3].

Sesame is probably the most used framework in the Semantic Web com-

munity. It is not only an RDF store, but it also provides tools to query

and manipulate data locally and remotely. The framework is fully extensi-

ble and configurable in terms of storage mechanisms, inferencers, RDF file

formats, query result formats and query languages. This flexibility led to

a highly integrated recommender repository which can be easily integrated

into a Sesame-based project by simply replacing the dependencies.

Sesame has a layered architecture as shown in the following figure:

Repository API

RDF Model

HTTP ServerApplication

Application

SAIL API RIO

Sail Query Model

SeRQL

engine

RDQL

engine

Figure 4.1: Sesame’s architecture.

At the bottom we find the RDF-model. All components of Sesame are

partially dependent on this layer. The RDF-model specifies interfaces and

implementations of all RDF building blocks: IRIs, anonymous nodes, liter-

als, statements, etc.

Data can be loaded into the system by means of the RDF Input/Output

(RIO) component. The RIO input component consists of a set of parsers

that makes it possible to load serialized RDF data. Almost any serialization

format is supported, from RDF/XML to N3 and Turtle. The output com-

ponent of RIO allows us to serialize statements stored in the RDF-model.

Actual RDF data can be stored in different ways, e.g. in main memory,
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4.1. Sesame’s architecture

as a relational database, by using dedicated disk-based data structures, or by

implementing a hybrid approach. Independently of the storage, a uniform

way of accessing and manipulating data that abstracts from implementation

details is realized by means of the so-called Sail API (Storage And Inference

Layer). This low level communication interface permits the performing of

operations such as adding, removing and querying RDF triples.

An operation is accomplished in Sesame by two different components:

a Sail object and a connection (SailConnection) set to communicate with

the object. In Sesame there are several implementations of these pairs of

components to support different features. For instance, some connections

and objects handle transactions and concurrent access, whereas other do not

support these functionalities to allow for a more efficient evaluation. Some

Sails can be stacked on top of other Sails by implementing the StackableSail

interface. In that case all calls directed to the bottom Sail will pass through

the Sails that are on top of it. Another key design feature of Sesame is that

all data extracted from a Sail object is returned in the form of (forward-

only) iterators. This scalable approach allows one to fetch a set of stored

statements by only keeping one statement at a time in main memory.

Out of the box, Sesame supports SPARQL and SeRQL (Sesame Rdf

Query Language) querying. The engines transforms a query into a Sail query

object. The Sail Query Model provides a uniform model for representing

queries. A language-specific parser transforms a query into a tree-based

representation, which can then be optimized and evaluated.

The repository API is a higher level API that in turn uses the Sail API.

This allows the user to perform operations similar to those one can perform

in a Sail object, but it adds a further layer that allows for abstracting archi-

tectural details. A local repository is designed to operate on a local context,

i.e. on the same Java virtual machine. In contrast, a remote repository API

has been designed to operate on a client-server architecture. There are sev-

eral implementations of this API, e.g. SailRepository and HTTPRepository.

The former translates calls to a Sail implementation of choice, the latter of-

fers transparent client-server communication to a Sesame server over HTTP.

The top-most layer in the diagram is the HTTP Server. It consists of

a number of Java Servlets that implement a protocol for accessing Sesame

repositories over HTTP. The details of this protocol can be found in Sesame’s
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4.2. ReSPARQL recommender’s architecture

system documentation. The RESTful HTTP interface supports the SPARQL

Protocol for RDF.

4.2 ReSPARQL recommender’s architecture

In this section the architecture of the system will be described. The im-

plementation of the recommender is an extension of Sesame 2.7, which is

a stable release. This recommender repository is a local repository, which

stores data in main memory (but it is capable at the same time of synchro-

nizing data with a file). The following figure illustrates a simplified workflow

of the system:

Recommender Memory Store

Algebra

Recommender

Memory store 

Connection

ReSPARQL Parser

Recommender

Repository

Recommender

Evaluation strategy

Evaluation (utils)

Rec. Repository Connection

RDF Store

internal

evaluate
evaluate

Evaluation (iterators)

N-ary tuple

operator

Similarity

Iterator

Cross product

Iterator

Vector 

Similarity

Cross

Product

Similarity
Build

Tuple Expression

ReSPARQL PRE-Parser

Instruct

recommender

Lock 

manager
Persistent

Sync
Snapshots Transactions

Prepare

Tuple query

Query Parser Util

Language

detection

Cache

System

Recommender

System

Properties

Load Data

Initialize Shutdown

iterate

Sesame’s

component

Work!ow

Functionality

Communication

ReSPARQL 

rec.’s new

implemented

component

Figure 4.2: Simplified workflow of ReSPARQL recommender respository.
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4.2. ReSPARQL recommender’s architecture

In order to implement the ReSPARQL recommender, new components

in almost each layer had to be created as figure 4.2 illustrates. However,

many of the components are extensions of already existing implementations

and therefore many functions didn’t have to be reimplemented.

In the remaining part of this chapter these new components will be

described according to the workflow triggered by a query execution.

4.2.1 Recommender Sail and Repository

The Recommender Sail is an extension of MemoryStore. This implemen-

tation of a Sail stores its data in main memory, but can also use a file

for persistent storage. MemoryStore supports single, isolated transactions.

This means that changes to the data are not visible until a transaction is

committed and that concurrent transactions are not possible. If a transac-

tion is active, calls to startTransaction( ) waits until the active transaction

is committed or rolled back [3].

RecommenderMemoryStore extends the class MemoryStore and inherits

most of its features. Since a store is a Sail object, a Sail connection is

required in order to perform operations on it. RecommenderMemoryStore

returns a RecommenderMemoryStoreConnection. In this component, two

functionalities were redefined.

First of all, the evaluation of queries forwards the flow to recommender-

specific components. Secondly, the RecommenderMemoryStoreConnection

is responsible for starting the pre-processing of RDF data to enhance the

computation of similarities. This occurs when a request for pre-processing

arrives from components on top of it, e.g. when the data is initially loaded,

or when the evaluation of a query requires data from the cache, and this

has not been initialized yet. In section 4.2.4, the pre-processing phase is

described in more detail.

Just as in Sesame, a SailRecommenderRepository and a SailRecommender-

RepositoryConnection were implemented on top of the above described Sail.

One important task redefined for the repository connection, was the parsing

of queries. It forwards the control to recommender-specific components.

Each of the components of these two layers have also access to the prop-

erties of the system and the cache system, which can then be passed by

reference to other components, e.g. the parsing or evaluation module.
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4.2.2 ReSPARQL pre-parser and parser

The parser was generated by means of JavaCC2. The grammar of SPARQL’s

syntax in Sesame is specified in a file called sparql.jj, which is distributed

together with the sources of the project. The extended ReSPARQL clauses

were added to it, such as RECOMMEND, which was added as a new query

type (such as SELECT or CONSTRUCT ). The file can then be given as

input to JavaCC, which generates a parser from it. However, the parser

could not be directly integrated into Sesame; it was necessary to further

modify some of the generated classes to achieve this.

The goal of the parser is to take a ReSPARQL query as input and to

generate a tuple expression tree (a tree representation of the query) from it.

The tree’s nodes represent either SPARQL algebra operators or ReSPARQL-

specific operators.

While the parser was designed to validate the grammar of the query and

build the tree, a pre-parser was designed to extract information from the

query, whose purpose is to instruct the recommender system about how to

perform recommendations.

To illustrate the role of each component, let’s consider the query in

table 4.1:

...

1 RECOMMEND ?user ?movie.REC ?RATING

2 WHERE {

3 ?user rdf:type resparql:User .

4 ?movie rdf:type resparql:Item .

5 ?user movies:hasRated ?persRating .

6 ?persRating movies:ratedMovie ?movie }

7 BASED ON {

8 ?movie movies:hasGenre ?genre

9 }

Table 4.1: Example to illustrate the roles of pre-parser and parser in

ReSPARQL.

Some of the tasks of the pre-parser consist in:

2JavaCC is an open source parser generator and lexical analyzer generator for the Java

programming language.
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• verifying that the query contains a prefix of resparql’s namespace;

• using the RTP to extract the roles of variables;

• detecting graph patterns within the RSP which correspond to features;

• verifying that all FGPs are related to either users or items but not

both;

• automatically detecting the approach to be followed, i.e. content-based

or collaborative filtering, based on the FGPs provided.

If all information is successfully extracted from the query, it is forwarded

to ReSPARQL’s parser, which builds a syntax-based tree in two phases.

First of all, it first generates a syntax-based tree that represents the clauses

used in the query, as the figure 4.3 shows:

QueryContainer

Pre xDecl (pre x=...) RecommedQuery

Recommed

WhereClause BasedOnClause

GraphPatternGroup

ProjectionElem

Var (user)

Var (user)

PathElt

ProjectionElem
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Var (personalRating)

ProjectionElem

RATING

BasicGraphPattern

GraphPatternGroup

GraphPatternGroup

BasicGraphPattern

PropertyListPath

TriplesSameSubjectPath

QName (movies:hasRated)

PathAlternative ObjectList

PathSequence

Var (personalRating)

Var (movie)

Var (movie)

QName (movies:ratedMovie)

Var (genre)

QName (movies:hasGenre)

IRI

PathElt

PropertyListPath

TriplesSameSubjectPath

PathAlternative ObjectList

PathSequencePathElt

PropertyListPath

TriplesSameSubjectPath

PathAlternative ObjectList

PathSequence

Figure 4.3: ReSPARQL query container.

Finally, this tree is processed again and the algebra tree is built from it,

as the figure 4.4 shows:
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Recommend

ProjectionElemList

Extension

ExtensionElem

(RATING)

ProjectionElem

“user”

ProjectionElem

“movie.REC”

ProjectionElem

“RATING”

Join

Join Join

CrossProduct

Var (name = 

RATING)

Var (movie) Var (genre)

Var (...movies#

hasGenre)

Projection

StatementPattern

Var (user) Var (personal

Rating)

Var (...movies#

hasRated)

StatementPattern

Var (movie)Var (personal

Rating)

Var (...movies#

ratedMovie)

StatementPattern

Var (

movie.REC)

Var (

user.REC)

Var (...movies#

hasRated)

StatementPattern

Var (personal

Rating.REC)

Var (personal

Rating.REC)

Var (...movies#

ratedMovie)

StatementPattern

Similarity

Join

RecommendQueryRoot

Figure 4.4: ReSPARQL tuple expression (algebra tree).

All nodes in orange in fig. 4.4 are the new operators introduced in

ReSPARQL in order to compute recommendations.

4.2.3 ReSPARQL algebra tree

The purpose of an algebra tree in Sesame is to provide a hierarchical abstract

model of operators that can be applied to data in order to produce a certain

result. An algebra tree can be optimized and evaluated.

The node at the top of tree in fig. 4.4 is the node which distinguishes

the kind of operation that one wants to accomplish. The node Recommend-

QueryRoot carries with it information that the recommender system needs

to compute recommendations, e.g. the role of nodes, or the kind of approach

to use (CF or CB).

The node Recommend is the node responsible for computing the pre-

dicted ratings when the complete solution mapping is available, i.e. when

explicit data has been joined with the similarities solution mappings.

The CrossProduct operator shown in figure 4.4 takes a set of features

as input (it is an N-ary operator, although in this example it has only one

feature as input) and produces pairs of objects, either users or items, having
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at least one of the listed features together with a set of feature vectors,

which can then be compared by the Similarity operator. In Sesame, algebra

trees are processed bottom-up, i.e. each of the nodes in the tree applies the

operator and then passes the result to the parent node.

The Similarity operator computes the similarity of the objects, two at a

time, and applies the cosine distance function to each pair of feature vectors.

4.2.4 Pre-processing and cache system

A cache system was implemented and integrated into Sesame’s architecture.

The main goal of the cache system is to maintain a multimap, whose purpose

is to enable a faster retrieval of both, objects having a certain feature, and,

of feature values for a given object. Two implementation of multimaps were

used in the project: the first one is based on Guava Libraries3, whereas the

second one is based on MapDB4. In particular, the implementation based

on the second library guarantees that the multimap can be backed in a file

if the amount of memory is not enough.

In the multimap keys are created by concatenating a subject and pred-

icate’s URI, representing respectively an object and a feature, and whose

values are all the values that the object has for that feature. In this way, it

is possible to retrieve the feature vector for a given object-feature in a rea-

sonable time. Therefore, an iterator doesn’t need to retrieve the information

from the RDF-store.

The second and, not less important, task of the cache is to store infor-

mation about the queries itself, e.g. the variables representing the features

on each FGP, or the prefixes used in the query.

When the system is started and data is loaded for the first time into

it, the system pre-processes all paths of length 1. For each triple subject-

predicate-object found, a key “subject.predicate” is created and the “object”

is stored in the multimap as the value. Further features are added into the

cache if required.

3The Guava project contains several of Google’s core libraries that we rely

on in our Java-based projects: collections, caching, primitives support, con-

currency libraries, common annotations, string processing, I/O, and so forth.

https://code.google.com/p/guava-libraries/
4MapDB provides concurrent Maps, Sets and Queues backed by disk storage or off-

heap memory. http://www.mapdb.org/
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4.2.5 Evaluation

In Sesame a tuple expression tree is evaluated by implementing a strat-

egy. For instance, a strategy for evaluating SPARQL queries is represented

by the class EvaluationStrategyImpl. Consequently, a strategy to evaluate

ReSPARQL queries was designed which can also receive benefit from the

cache system and therefore minimize data retrieval.

The tree is processed recursively and the evaluation is triggered from

the root node. In a strategy class, one iterator is responsible for evaluating

each of the operators (nodes of the tree). Therefore, data is first retrieved

by iterators which evaluate operators at the leaves of the tree and the solu-

tion mappings are given as input to other iterators. This kind of iterators

accesses data directly from the Sail object, RecommenderMemoryStore, us-

ing a connection. An iterator has two main methods: hasNext() and next().

The first one verifies that solution mappings coming from other iterators are

still available. The second one retrieves the next available solution mapping.

The evaluation through iterators is a key feature in Sesame: there’s

at most one “tuple” at a time in main memory. When the final solution

mapping reaches the iterator at the top of the tree, it is returned to the

caller or serialized by means of the RIO interface.

Two iterators were implemented in ReSPARQL: CrossProductIterator

and SimilarityIterator. These work tightly with the cache system, i.e. they

extract data only when this is necessary. For instance, CrossProductIterator

first determines if a feature could have been stored in the cache. If this is the

case, it doesn’t need to recursively call other iterators to retrieve the data

from them. As we will see in the next section, having a feature in cache

means that, first of all, the iterator can get a list of all objects having that

feature. Secondly, the values that an object could have for a specific feature

(they might have multiple values, e.g. cast for a movie) are also stored in

the cache. A solution mapping is created which consists of two objects and,

for each of them, the location of each feature vector stored in the cache, i.e.

a key to retrieve the vector.

If a feature has not been previously processed by the system, then it

might not be in cache. In that case, the normal flow is triggered. A recursive

call retrieves a solution mapping from another iterator. Eventually, data
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is retrieved from the Sail object. A feature vector is built for an object

and the information is added into the cache. Finally, the iterator builds a

solution mapping as described above, as if the feature vectors would have

been already in the cache.

The SimilarityIterator simply retrieves the feature vectors for each object

using the provided keys and computes the cosine distance for each pair

of feature vectors. The final score is the average of the individual cosine

distances obtained.

The computation of the cosine distance is made by the class VectorSim-

ilarity which is a utility class within the evaluation module. SimilarityIt-

erator returns a solution mapping which contains both the pair of objects

considered and the final similarity score.
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Chapter 5
Conclusion

The purpose of this work was to determine whether the two processing

paradigms of SPARQL and recommender systems could be combined in one

solution. In order to answer that question, a query language, ReSPARQL,

was designed as an extension of SPARQL.

A tight integration was evidenced in this novel approach and thereby

both paradigms receive benefits from each other. In regard to expressive-

ness, ReSPARQL has shown itself capable of taking advantage of SPARQL’s

features, e.g. the possibility of working on arbitrary RDF-graphs and re-

trieving and filtering data by means of graph pattern matching. Meanwhile

ReSPARQL also overcomes SPARQL’s limitations, e.g. the limitation of

producing implicit patterns. Both content-based and collaborative-filtering

are possible in ReSPARQL. By adding content-based features of users to

a collaborative approach, hybrid recommendations are also partially sup-

ported. ReSPARQL queries are highly customizable: they allow the speci-

fying of tailored neighborhoods, the enabling of querying recommendations

which go beyond the classic user/item paradigm, and they allow for the

grouping of results in a flexible way.

The ReSPARQL recommender system, implemented during the course

of this work, demonstrates that an implementation to evaluate ReSPARQL

queries is feasible. With the approach followed in this work a query model

can be built from a query, which in turn can be optimized and evaluated.

This was successfully combined with a cache system, which helped to accel-

erate the computation of similarities.
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5.1 Future work

ReSPARQL is a novel approach for computing recommendations against

RDF-graphs which covers many aspects: from the specification of the lan-

guage, which determines its expressiveness, to the development of new tech-

niques to obtain recommendations more efficiently.

In the remaining part of this section, an overview of potential areas

for future research will be provided by categorizing them into two parts:

expressiveness of ReSPARQL and implementation of the ReSPARQL rec-

ommender system.

Expressiveness of ReSPARQL

• Tighter integration with SPARQL 1.1: the integration of both

paradigms, SPARQL and recommender systems, could be further en-

hanced by supporting further SPARQL 1.1 features, e.g. sub-queries,

property paths, inference mechanisms, etc. This would allow us to

express more sophisticated connections between users, items and their

features. One limitation seen in ReSPARQL is that, depending on the

direction of the arcs, it might be possible to use only one approach,

either a user-based CF or an item-based CF. With property paths this

could be solved by matching an inverse path.

• Multiple semantic knowledge bases: as mentioned in the intro-

duction, a recommender system in the Semantic Web vision should

aim to produce cross-domain recommendations by working on differ-

ent semantic knowledge bases, e.g. on distributed RDF data in the

Linked Data model. This would bring the benefit of filling informa-

tion gaps, e.g., of recommended items. A model to be followed could

be based on the specification of SPARQL 1.1 Federated Query.

• Beyond accuracy: allowing users to express the desired degree of

diversity, novelty or serendipity would increase the expressiveness of

the language [35].

• User-defined ratings: in ReSPARQL the predicted rating is com-

puted internally, but it could be worthwhile to allow users to define
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their own heuristic functions. This could be achieved in the future if

expressions are allowed directly in the projection clause in SPARQL1.

• Advanced similarity function: when comparing features with sin-

gle values, e.g. the age of a user, the similarity computed with cosine

distance returns either a “1” if both users have the same age, other-

wise “0”. The similarity heuristic does not reflect the fact that two

users, whose age differ by 5 years, are more similar than two users,

whose age differ by 10 years. The similarity function is not able to

understand the semantics of the features, but this would be desirable

in a semantic recommender.

• Normalized ratings: In classic approaches, predicted ratings are

normalized (see section 2.2.2). It would be desirable to implement

this in ReSPARQL.

• Hybrid approach: some hybrid approaches were presented in section

2.2.3. In ReSPARQL hybridization is achieved by implementing a

collaborative approach that uses not only ratings but also content-

based profiles of users. This could certainly be extended to support

more kinds of hybrid approaches, e.g. by combining predicted ratings

obtained from content-based an collaborative approaches. In order

to achieve this, ReSPARQL should permit FGPs which refer to both

users or items.

• Partition by: for recommender applications it might be useful to

have an analytic clause, like in SQL, that divides the result set into

partitions, without necessarily aggregate them. For instance,

PARTITION BY ?user SHOW TOP 5 ?RATING would show for each

user the top 5 ratings obtained. This cannot be currently achieved by

SPARQL.

Implementation of ReSPARQL recommender system

• Automatic detection of users and items from RDF-graph:

recommenders are typically focused on certain types of relationships

1It is still debated whether this feature will be added or not:

http://www.w3.org/TR/sparql-features/#Project_expressions
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between objects and it is still actively researched how to choose the

kind of objects that should be recommended at runtime in an ad hoc

fashion.

• Improvement of the cache system: the cache system was designed

to be able to rapidly retrieve all objects having a certain feature and to

retrieve vectors of features, which certainly saves times accessing and

retrieving data from Sesame’s memory store. This could, however, be

extended to directly store the similarity scores to further avoid the

computation of the cosine distance on queries with the same RSP.

• Improvement of the pre-processing phase: computation of sim-

ilarities between different kinds of objects is typically done in classic

recommender systems in a pre-processing phase. However, in ReSPARQL

this is a very hard task, because the system cannot know in ad-

vance (until at least one query is evaluated) which nodes represent

users/items. The roles of nodes could even change from query to query.

Considering all possible scenarios for pre-computation of similarities

is unfeasible.

• Optimization of evaluation: the model built from a ReSPARQL

query can be optimized, e.g. by relocating the filters in the correct

nodes of the expression tree.

• Schema awareness: a key feature of ReSPARQL consists in pro-

viding recommendations without relying on a RDFS. However, if this

kind of information is available, the system should be able to use it to

provide more accurate recommendations.

• Use of ontologies in ReSPARQL: as for other recommended sys-

tems implemented for RDF data sources, it could be useful to specify

a ReSPARQL ontology to enhance contextual information or to rep-

resent the semantic distances between objects.

• Augmentation of data sources: it could be useful to augment the

original data with RDF triples which represent the recommendations,

e.g. to analyze the trend of recommendations over time.
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Appendix A
Appendix

A.1 RESPARQL JJTree fragment (grammar)

The following is a fragment of RESPARQL JJTree input file for JavaCC.

The purpose of this appendix is to show how ReSPARQL specific tokens

where intertwined with SPARQL tokens. The complete SPARQL JJTree is

available as a part of Sesame’s documentation [3].

TOKEN [IGNORE_CASE] :

{

<BASE: "base">

| <PREFIX: "prefix">

| <RECOMMEND: "recommend">

| <SELECT: "select">

| <CONSTRUCT: "construct">

| <DESCRIBE: "describe">

| <ASK: "ask">

[...]

| <WHERE: "where">

| <BASED_ON: "based on">

| <MEASURES: "measures">

[...]

}

[...]

void Query() #void :{}

{ RecommendQuery() }
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A.1. RESPARQL JJTree fragment (grammar)

void RecommendQuery() :{}

{ Recommend()

( DatasetClause() )*

WhereClause()

BasedOnClause()

( MeasuresClause() )?

SolutionModifier()

[BindingsClause()] }

[...]

void Recommend() :{}

{ <RECOMMEND>

[

<DISTINCT> {jjtThis.setDistinct(true);} |

<REDUCED> {jjtThis.setReduced(true);} ]

(

<STAR> { jjtThis.setWildcard(true); } |

( ProjectionElem() )+

) }

[...]

void WhereClause() :{}

{ [<WHERE>] GroupGraphPattern() }

void BasedOnClause() :{}

{ [<BASED_ON>] GroupGraphPattern() }

void MeasuresClause() :{}

{ [<MEASURES>] GroupGraphPattern() }

void SolutionModifier() #void :{}

{ [GroupClause()] [HavingClause()] [OrderClause()] [LimitOffsetClauses()] }

[...]

void GroupClause() :{}

{ <GROUP> <BY> ( GroupCondition() )+ }

void OrderClause() :{}

{ <ORDER> <BY> ( OrderCondition() )+ }

void GroupCondition() :{}

{

FunctionCall()
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| BuiltInCall()

| <LPAREN> Expression() [ <AS> Var() ] <RPAREN>

| Var()

}

void HavingClause() :{}

{ <HAVING> Constraint() }

void OrderCondition() :{}

{

[ <ASC> | <DESC> {jjtThis.setAscending(false);}] BrackettedExpression()

| FunctionCall()

| BuiltInCall()

| Var()

}

void LimitOffsetClauses() #void :{}

{

Limit() [ Offset() ] |

Offset() [ Limit() ]

}

void Limit() :

{ Token t; }

{

<LIMIT> t = <INTEGER>

{ jjtThis.setValue(Long.parseLong(t.image)); }

}

void Offset() :

{ Token t; }

{

<OFFSET> t = <INTEGER>

{ jjtThis.setValue(Long.parseLong(t.image)); }

}

[...]
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