
Map-Side Merge Joins for Scalable
SPARQL BGP Processing

Martin Przyjaciel-Zablocki*, Alexander Schätzle*, Eduard Skaley, Thomas Hornung, Georg Lausen

Department of Computer Science
University of Freiburg

Georges-Köhler-Allee 051, 79110 Freiburg, Germany
zablocki|schaetzle|skaley|hornungt|lausen@informatik.uni-freiburg.de

Abstract—In recent times, it has been widely recognized that,
due to their inherent scalability, frameworks based on MapRe-
duce are indispensable for so-called “Big Data” applications.
However, for Semantic Web applications using SPARQL, there
is still a demand for sophisticated MapReduce join techniques
for processing basic graph patterns, which are at the core of
SPARQL. Renowned for their stable and efficient performance,
sort-merge joins have become widely used in DBMSs. In this
paper, we demonstrate the adaptation of merge joins for SPARQL
BGP processing with MapReduce. Our technique supports both
n-way joins and sequences of join operations by applying merge
joins within the map phase of MapReduce while the reduce phase
is only used to fulfill the preconditions of a subsequent join
iteration. Our experiments with the LUBM benchmark show an
average performance benefit between 15% and 48% compared
to other MapReduce based approaches while at the same time
scaling linearly with the RDF dataset size.

I. INTRODUCTION

System architectures for processing “Big Data” typically
follow a layered approach: the front tier is responsible for
answering simple queries in real-time as low latencies are
essential. More complex analyses are performed offline in
batches and results are pushed to the front tier in intervals
(cf. e.g. [1]). Typical representatives of such long-running
queries are e.g. “who knows whom” queries that require many
costly joins. Due to its inherent high degree of parallelism
and good scalability properties, MapReduce [2] is one of the
predominant frameworks used in many large companies for
dealing with “Big Data”. Thus, it is a natural candidate for
processing long-running queries in the background. Although,
it might not be the most efficient solution wrt. node utilization,
it gracefully handles load-balancing on top of commodity
hardware, especially when it comes to rapidly growing datasets
where its built-in fault tolerance becomes another advantage.

Given the wide adoption of Semantic Web technologies,
the amount of available RDF data [3] has also grown into
dimensions where it is crucial that solutions scale out [4] as
witnessed by the annual Semantic Web Challenge1. Conse-
quently, MapReduce has been applied for query processing on
top of large RDF graphs with (a subset of) SPARQL [4], [5],
[6], the official query language for RDF [7], [8]. Following
this line of research, we investigate the efficient computation

* The work of these authors was partially funded by Deutsche Forschungs-
gemeinschaft (DFG), grant LA 598/7-1.

1http://challenge.semanticweb.org/

of SPARQL basic graph patterns (BGPs) – which are at the
core of SPARQL – on top of MapReduce. The computation
of SPARQL BGPs translates to the evaluation of joins on the
operator level, an area which has been extensively studied by
the database community in the past [9]. Here, due to their
stable and efficient performance, merge joins have emerged as
a widely adopted solution used in many databases.

In this paper, we present an implementation of a distributed
(n-way) sort-merge join on top of MapReduce, where the join
is computed completely in the map phase. It addresses the
problem of cascaded executions by using the reduce phase of
MapReduce to assure that the “left-hand” side of the join is
sorted wrt. the join attribute(s). Our data model assures that
the “right-hand” side of the join is always pre-sorted on the
required attributes. For the reduction of intermediate results,
bloom filters [10], [11] are used to remove dangling tuples.
A comparison of our approach to other MapReduce based
join techniques showed that our system exhibits a performance
benefit of 15% to 48% on average over all LUBM [12]
queries. Our proof-of-concept implementation is also available
for download2.

The remainder of the paper is structured as follows: Sec-
tion II gives an introduction to RDF, SPARQL, and MapRe-
duce. It is followed by a conceptual overview of our approach
in Section III. Section IV introduces the data store layout for
our merge join implementation that is presented in Section V.
Section VI reports the results of our experimental comparison
of different SPARQL BGP implementations. Section VII dis-
cusses related work and Section VIII summarizes our results.

II. PRELIMINARIES

A. RDF & SPARQL

RDF [3] is the W3C recommended standard model for
representing knowledge about arbitrary resources, e.g. articles
and authors. An RDF dataset consists of a set of RDF triples
in the form (subject predicate object) that can be interpreted
as “subject has property predicate with value object”. For
clarity of presentation, we use a simplified RDF notation in
the following. It is possible to visualize an RDF dataset as
directed labeled graph where every triple corresponds to an
edge (predicate) from subject to object. Figure 1 shows an
RDF graph about articles and corresponding authors.

2http://dbis.informatik.uni-freiburg.de/forschung/projekte/DiPoS/

Article1 Alex

Martin Article2

authorauthor

"PigSPARQL"

"2011"
"RDFPath"

"2011"

author

year

title

author

cite

title

year

SPARQL BGP query

SELECT *
WHERE {
 ?article1 title ?title .
 ?article1 year "2011" .
 ?article2 cite ?article1
}

Fig. 1. Example RDF graph and SPARQL BGP query

SPARQL is the W3C recommended declarative query
language for RDF. A SPARQL query defines a graph pattern
P that is matched against an RDF graph G. This is done by
replacing the variables in P with elements of G such that
the resulting graph is contained in G (pattern matching). The
most basic construct in a SPARQL query is a triple pattern,
i.e. an RDF triple where subject, predicate and object can be
variables, e.g. (?s p ?o). That is, a triple pattern selects a subset
of an RDF graph that matches the bound values in the pattern.
A set of triple patterns concatenated by AND (.) is then called
a basic graph pattern (BGP) as illustrated in Figure 1. The
query asks for all articles published in 2011 that are cited by
at least one article. The result of a BGP is defined to be the
intersection of all subsets defined by the corresponding triple
patterns and can be computed by joining the results of all
triple patterns on their shared variables, in this case ?article1.
For a detailed definition of the SPARQL syntax we refer the
interested reader to the official W3C Recommendation [7]. A
formal definition of the SPARQL semantics can also be found
in [8]. In this paper we focus on efficient join processing with
MapReduce and therefore only consider SPARQL BGPs.

B. MapReduce

The MapReduce programming model [2] enables scalable,
fault tolerant and massively parallel computations using a
cluster of machines. MapReduce is built on top of a distributed
filesystem where large files are split into equal sized blocks,
spread across the cluster and fault tolerance is achieved by
replication. Hadoop is the most prominent open source im-
plementation of MapReduce. The workflow of a MapReduce
program is a sequence of MapReduce iterations each consisting
of a map and a reduce phase. A user has to implement the
map and reduce functions which are automatically executed in
parallel on a portion of the data. The map function gets invoked
for every input record represented as a key-value pair and
outputs a list of new intermediate key-value pairs. In the reduce
phase these intermediate pairs are first sorted and grouped by
their key. The reduce function gets then invoked for every
distinct key together with the list of all according values and
outputs a list of values which can be used as input for the next
MapReduce iteration. We omit a more detailed introduction to
MapReduce due to space limitations.

III. OUR APPROACH IN A NUTSHELL

Processing joins on large datasets is even with MapReduce
a challenging task [13]. If we want to join two datasets with
MapReduce, L on R, we have to ensure that the subsets of L
and R with the same join key values can be processed on the
same machine. With respect to RDF, the join key is the shared
variable between triple patterns (e.g. ?article1 in Figure 1)
and datasets can be different RDF graphs but also subsets of
the same RDF graph. This is typical for most SPARQL queries

as BGPs essentially correspond to self-joins between subsets
of the same graph.

For joining arbitrary datasets on arbitrary keys we generally
have to shuffle data over the network or choose appropriate
pre-partitioning and replication strategies. The most prominent
and flexible join technique in MapReduce is the so-called
Reduce-Side or Repartition Join [13] where the idea is based
on reading both datasets (map phase) and repartition them
according to the join key. The actual join computation is done
in the reduce phase. The main drawback of this approach is
that both datasets are completely transferred over the network
regardless of the join output. This is especially inefficient for
selective joins and consumes a lot of network bandwidth.

In this paper, we present an adaptation of the classical sort-
merge join, a well known technique in database systems, where
we use the map phase for join computation to reduce network
I/O. The key idea is to first sort datasets L and R by the
join key such that identifying equal values in both datasets
can be done using interleaved linear scans. Consequently, the
first thing we have to guarantee is that L and R are always
sorted by join key and also the join output has to be sorted
according to the join key of the next join iteration in a sequence
of joins. Furthermore, for an efficient parallel execution in a
cluster of N machines we have to divide the join task into N
independent subtasks where each subtask can be processed by
exactly one machine. Therefore, we split both (sorted) datasets
in N non-overlapping subsets of continuous key ranges such
that L =

⋃
1≤i≤N Li and R =

⋃
1≤i≤N Ri. If we use the

same key ranges for both datasets, it holds that L on R =⋃
1≤i≤N Li on Ri (cf. Figure 2). Our data preprocessing and

store layout is described in detail in Section IV. Driven by
this data partitioning, the map phase can process an efficient
parallel merge join between pre-sorted dataset splits. We use
the subsequent reduce phase to guarantee that the join output
fullfills the preconditions for the next iteration, i.e. it must
be sorted according to the next join key and split into N
subsets such that key ranges match with the next join partition.
Furthermore, we use dynamic bloom filters to discard dangling
tuples in intermediate join results, i.e. tuples where the bloom
filter guarantees that they will not find a join partner in the
next iteration and hence do not contribute to the final query
result. The join processing is described in detail in Section V.

L1

L2

...

LN

[a..c)

[c..e)

[x..z]

 sorted by join key

R1

R2

...

RN

[a..c)

[c..e)

[x..z]

 sorted by join key

L1 R1

L2 R2

LN RN

...

Fig. 2. Distributed merge join as a union of N independent subtasks

IV. RDF DATA STORE LAYOUT

Since the input datasets have to be sorted by join key to
apply a merge join and basic graph patterns operate on a
single input RDF graph, it is reasonable to perform a data
preprocessing that reduces the sorting effort during query
execution. Furthermore, it is a common practice to partition
the RDF graph into smaller subsets such that triple pattern

matching can be done more efficiently [14]. In this section
we describe our data store layout for RDF that (1) partitions
the data to efficiently support the most common triple pattern
types and (2) ensures that we only have to sort the output of
the previous join while the second input is always pre-sorted.

Based on the ideas in [14] we split the data using a vertical
partitioning schema where all triples with the same predicate
are stored in the same first level partition. We call such a
partition a P-partition. Similar to [5], we complement these
partitioning schema by also looking at the objects such that
all triples with the same predicate and object are also stored
in the same second level partition, denoted as PO-partition
(cf. Figure 3). That is, for every triple (s p o), there exists a
tuple (s o) in P-partition p and an entry (s) in PO-partition
p|o. The original RDF graph and all partitions (P and PO)
are stored in the distributed filesystem (HDFS). Technically,
they are stored using the SequenceFile format of Hadoop
that allows comparisons on byte level. We do not consider the
combination of predicate and subject since this would result
in many small partitions which is undesired in a MapReduce
framework.

 z rdf:type b
x rdf:type c
y rdf:type a
w rdf:type c
u rdf:type a
t rdf:type b
z ub:name m
t ub:name n
p ub:name m
q ub:name n

...

z b
x c
...

rdf:type

ub:name

P-partitions

z
t

rdf:type | bS P O
S O S

y
u

rdf:type | a

S

PO-partitionsoriginal RDF graph

z
p

S
t
q

S

z b
x c
y a
w c
u a
t b

rdf:type

S O

t b
u a
w c
x c
y a
z b

S O

u a
y a
t b
z b
x c
w c

S O

so
rt

by
 su

bj
ec

t

so
rt

by
 o

bj
ec

t

key
ranges

subject
sampling

object
sampling

key
ranges

object
sampling

subject
sampling

S O

S O

S O

ba
la

nc
ed

un
ba

la
nc

ed

ba
la

nc
ed

un
ba

la
nc

ed

...

S O

...

...

...

..

ub:name | m ub:name | n

..z m
t n
...

S O

.
. .
.

Fig. 3. General store layout with P and PO-partitions

To reduce the sorting effort during query execution we
perform a pre-sorting of the input dataset and the partitions
by all possible attributes, i.e. the overall input dataset (RDF
graph) is sorted three times by subject, predicate and object,
P-partitions are sorted twice by subject and object and PO-
partitions are sorted by subject.

As already mentioned in Section III, we have to split every
sorted partition into N non-overlapping subsets of continuous
key ranges. This is achieved during the initial sorting of the
partition by assigning continuous and non-overlapping key
ranges to the N reducers. The key ranges are derived by a
sampling of the partition values, i.e. a representative sample
of the values is extracted and key ranges are assigned such that
there is a uniform and ordered distribution of partition values
to the resulting N subsets. To get an uniform distribution, the
sample is taken from the subject values if the partition is sorted
by subject or from the object values if it is sorted by object.

This layout works fine for joins between triple patterns
where the join variable is on the same position, e.g. subject-
subject joins (cf. first two triple patterns in Figure 1). For these
joins, both sides must be sorted by the same attribute (e.g. by
subject) and therefore they also have the same key ranges.
However, when it comes to mixed join variable positions,
e.g. the rather common subject-object join (cf. last two triple
patterns in Figure 1), both sides must be sorted by different
attributes (one side by subject, the other side by object) and
hence the key ranges of both sides will not match in general.

But if the key ranges do not match, the join result is not
guaranteed to be complete. To overcome this problem, we use
two different samplings when sorting a partition. For example,
when sorting a P-partition by subject, we do not only pick a
sample of the subject values but also a sample of the object
values and derive two different key ranges from these samples.
We then split the sorted partition in two ways according
to subject key ranges and object key ranges, respectively.
Hence, a P-partition is actually stored four times in our store
layout (cf. Figure 4 for P-partition rdf:type). To reduce the
storage overhead introduced by this layout, we compress every
partition using the snappy compression library3 that is already
shipped with Hadoop such that the final store size is actually
smaller than the original uncompressed input (cf. Table I in
Section VI).

 z rdf:type b
x rdf:type c
y rdf:type a
w rdf:type c
u rdf:type a
t rdf:type b
z ub:name m
t ub:name n
p ub:name m
q ub:name n

...

z b
x c
...

rdf:type

ub:name

P-partitions

z
t

rdf:type | bS P O
S O S

y
u

rdf:type | a

S

PO-partitionsoriginal RDF graph

z
p

S
t
q

S

z b
x c
y a
w c
u a
t b

rdf:type

S O

t b
u a
w c
x c
y a
z b

S O

u a
y a
t b
z b
x c
w c

S O

so
rt

by
 su

bj
ec

t

so
rt

by
 o

bj
ec

t

key
ranges

subject
sampling

object
sampling

key
ranges

object
sampling

subject
sampling

S O

S O

S O

no
t s

ke
w

ed
sk

ew
ed

no
t s

ke
w

ed
sk

ew
ed

...

S O

...

...

...

..

ub:name | m ub:name | n

..z m
t n
...

S O

.
. .
.

Fig. 4. Detailed view of sorting and key ranges for P-partition rdf:type

A drawback of this approach is that data distribution can be
skewed in general when key ranges are not derived from the
sort attribute (e.g. key ranges derived from object sampling
while sorting by subject). For joins on the same variable
position, e.g. subject-subject joins, this is not a problem as
we can use the key ranges that give a uniform distribution for
both sides. But in case of mixed join variable positions, one
side will be equally balanced (where the sampling fits to the
sorting) while the other side can be more or less unbalanced.
This is best illustrated by an example. Consider the BGP
(a b ?x . ?x c d) with two triple patterns that translates to
an object-subject join on variable ?x. Consequently, for the
first triple pattern we use the P-partition b sorted by object (and
filtered by subject a) and for the second pattern we use the PO-
partition c|d sorted by subject. But in addition, both sides must
have the same key ranges and hence use the same sampling. In
this case, we could either use key ranges derived by object or
subject sampling for both sides. The former gives an uniform
distribution for the partition of the first triple pattern but a
potential skew for the second pattern and vice versa.

Data skew handling in parallel joins has already been
studied in research (e.g. [15]). Our solution follows a greedy
approach, i.e. we always use the sampling that is optimal for
the larger of both sides. Though this is not an optimal solution
in theory, our experiments confirm that it works fine in practice
for most queries. Nonetheless, this is a crucial point for future
optimizations of our approach.

A. Dynamic Bloom Filter Integration

A bloom filter [10] is a space-efficient probabilistic data
structure used to check whether a given element is contained
in a set. It consists of a bit vector of size m and k different

3https://code.google.com/p/snappy/

uniform hash functions that map an element to one of the
m bit vector positions. The filter is constructed by applying
the hash functions to each element of the set and setting all
corresponding positions to 1. To check whether an element is
contained in the set, all k hash functions are applied.

We use bloom filters to remove dangling intermediate
results, i.e. results that do not contribute to the final query
result. To this end, we build up a bloom filter for every of the
N subsets of a partition during the initial sorting (cf. Figure 5)
and store them on every machine in the cluster by setting the
number of replications to N . We can then access these filters
locally during join execution to discard those intermediate
results where the filter guarantees that they will not find a
join partner in the partition of the next join iteration. This is
done in the map function for every intermediate join output.
The efficiency of this approach strongly relies on the false
positive probability but for static bloom filters this can only
be estimated if the number of elements to be inserted is known
a-priori such that the bloom filter size can be determined in
advance. For that reason, we use dynamic bloom filters [11]
which are essentially a collection of standard bloom filters that
increases dynamically with the number of inserted elements
while guaranteeing a pre-defined false positive probability.

z k
x p
y b
w z
u a
t h

rdf:type

...
ub:name

unsorted
P-partitions

S O

z k
x p

S O

u a
t h

...

Map Phase Reduce Phase

sort by
object S O

u a
y b

t h
z k
...

x p
w z

S O

[a .. f)

[f .. l)

...

[o .. z]

rdf:type

bloom 1

bloom 2

bloom N

sorted P-partitions
(split in N key ranges)

Fig. 5. Initial sorting (object) and bloom filter creation for P-parition rdf:type

V. MAP-SIDE MERGE JOIN WITH MAPREDUCE

After the initial data store generation, the actual BGP query
processing can be devided into three subtasks: (1) First, we
have to select the input partitions of the data store that match
the triple patterns of the BGP. (2) The results for every triple
pattern are iteratively joined in the map phase. (3) If there is
more than one join iteration the join output has to be post-
processed in the reduce phase, i.e. it must be sorted and split
into N subsets.

First, we introduce the SPARQL terminology that is used
in the following analogous to [8]: Let V be the infinite set of
query variables and T be the set of valid RDF terms.

Definition 1: A (solution) mapping µ is a partial function
µ : V → T . We call µ(?v) the variable binding of µ for ?v.
Abusing notation, for a triple pattern p we call µ(p) the triple
that is obtained by substituting the variables in p according to
µ. The domain of µ, dom(µ), is the subset of V where µ is
defined.

Definition 2: Two mappings µ1, µ2 are compatible, µ1 ∼
µ2, iff for every variable ?v ∈ dom(µ1) ∩ dom(µ2) it holds
that µ1(?v) = µ2(?v). It follows that mappings with disjoint
domains are always compatible and the set-union (merge) of
µ1 and µ2, µ1 ∪ µ2, is also a mapping.

Definition 3: The answer to a triple pattern p for an RDF
graph G is a list of mappings Ω = {µ | µ(p) ∈ G} without
a given order. The join of two lists of mappings, Ω on Ω′, is
defined as the merge of the compatible mappings in Ω and Ω′,
Ω on Ω′ = {(µ1 ∪ µ2) | µ1 ∈ Ω, µ2 ∈ Ω′, µ1 ∼ µ2}.

For the following discussion, we consider the example
SPARQL BGP from Figure 1 in Section II-A which consists
of three triple patterns p1, p2, p3:

(?art1 title ?title . ?art1 year 2011 . ?art2 cite ?art1)
Let Ω1,Ω2,Ω3 denote the mappings for p1, p2, p3, respectively.
The query result is then defined as Ω1 on Ω2 on Ω3. Further-
more, we use the notation Ω1

i to refer to the i-th subset of Ω1

defined by key ranges, i.e. Ω1
i and Ω2

i have the same key range
for the join key. It follows that Ω1 on Ω2 =

⋃
1≤i≤N (Ω1

i on
Ω2
i). In our example, the join key is ?article1 for all triple

patterns.

A. Input Selection

For every triple pattern in a BGP we have to (1) identify the
corresponding partition, (2) select the appropriate sorting and
(3) choose the matching key ranges. The partition selection is
derived from the bounded values in a triple pattern. Regarding
the example, we would choose P-partitions title and cite for
p1, p3, respectively, and PO-partition year|2011 for p2. The
entries of these partitions directly correspond to Ω1,Ω2,Ω3.
If there is no partition that directly matches the given pattern,
e.g. if the subject is bound, we choose the most appropriate
partition and apply a filter in the map phase before feeding the
data to the map function. The sorting of the selected partitions
is defined by the position of the join variable, i.e. partitions for
p1 and p2 must be sorted by subject whereas the partition for
p3 must be sorted by object. The selection of the matching key
ranges has already been outlined in Section IV. For the first
join between Ω1 and Ω2 the choice is clear as it is a subject-
subject join, hence we can use key ranges derived by subject
sampling which means that both sides are equally balanced.
However, the second join between the result of (Ω1 on Ω2) and
Ω3 is a subject-object join where we have to decide whether we
use key ranges derived by subject or object sampling. Without
loss of generality, we assume |(Ω1 on Ω2)| < |Ω3|. Thus, we
choose key ranges derived by object sampling such that the
partition splits for p3 are equally balanced.

B. 2-Way Merge Join

After the input selection, the query result is computed by
a sequence of cascaded 2-way merge joins as illustrated in
Figure 6. The input partitions (recall that the entries correspond
to the solution mappings for the triple patterns) are pre-sorted
by the join key and split into N subsets with matching key
ranges, e.g. Ω1 =

⋃
1≤i≤N Ω1

i . Within the map phase, every
machine in the cluster computes the partial join between two
subsets with matching key ranges, i.e. (Ω1

i on Ω2
i).

Due to the locality principle of MapReduce, one subset
is always read locally. However, we cannot guarantee that
both subsets with the same key range are stored on the
same machine as data placement is done by the distributed
filesystem where we store the partitions (for Hadoop this is
HDFS). In general, the larger subset is chosen to be processed
locally whereas the smaller subset has to be transferred over

the network at the beginning of the map phase. This is
automatically handled by Hadoop. Thus, in every join iteration
only the smaller subset (which is typically the output of the
previous join iteration) is transferred, in contrast to reduce-side
joins where typically both sides must be transferred. However,
it is a topic of our future developments to improve the co-
locality of matching key ranges such that both sides can be
read locally.

The merge-join algorithm for the map function is illustrated
in Algorithm 1. On every machine the map function is invoked
with a composite key consisting of the current join key and
the join key of the next iteration, if any. The value is also
a composite value consisting of the corresponding subsets
of solution mappings (these are essentially the entries of the
input partitions) and the bloom filter of the next join partition.
Regarding our example, the map invocation for the i-th mapper
in the first iteration would be

map({?article1, ?article1},{Ω1
i ,Ω

2
i , bloom(Ω3

i)}).
The current join key is article1 and this is also the join key of
the next iteration. The map function computes Ω1

i on Ω2
i and

discards those mappings where the bloom filter membership
test fails, i.e. for every merge of compatible mappings it is
checked whether the value of the next join key is contained in
the bloom filter of the next join partition. If this test fails, it
is guaranteed that there is no join partner in the next iteration
and the mapping can be discarded.

Ω1
1 Ω2

1 ΩN 1... Ω2
2 ΩN 2...

Map 1

Ω1
2

Ω1
1 Ω1

2

Map 2

Ω2
1 Ω2

2

Map N

ΩN 1 ΩN 2

...

Join

bloom: Ω1 3 bloom: Ω2 3 bloom: ΩN 3

Sorting
Reduce phase

(Ω1 Ω2)1 (Ω1 Ω2)2 (Ω1 Ω2)N
Ω2

3 ΩN 3...Ω1
3

Join

Map 1 Map 2 Map N...

...

Fig. 6. Cascaded 2-way map-side merge join

For a cascaded join sequence we use the subsequent reduce
phase to sort the join output, Ω1 on Ω2, according to the join
key of the next iteration and to split it into N subsets such
that the key ranges match with the key ranges of the next join
partition, Ω1 on Ω2 =

⋃
1≤i≤N (Ω1 on Ω2)i (cf. lower half of

Figure 6). In our example, we would use the same key ranges
that are used for the input partition matching p3. Therefore,
we also store the key ranges of a partition such that we can
reuse them for intermediate join results. As the sorting and
assignment of values to reducers (partitioning) is done when
shuffling data from mappers to reducers, the reduce function
is only an identity function that just stores its input to HDFS.
In the following join iteration, the i-th mapper then computes
(Ω1 on Ω2)i on Ω3

i and so on.

Algorithm 1: 2-way merge join - map(key, value)
input : key = {k′, k′′}, value = {Ωi,Ω

′
i, bloom(Ω′′

i)}
// k′ is the current join key, k′′ is the join key of the next join
// Ωi and Ω′

i are sorted by join key and have the same key range
// bloom(Ω′′

i) is the bloom filter of the next join subset Ω′′
i

output: Ωi on Ω′
i

1 l← 1, r ← 1
2 while l ≤ |Ωi| and r ≤ |Ω′

i| do
3 µ1 ← Ωi[l], µ2 ← Ω′

i[r]
4 if µ1(k′) = µ2(k′) then // µ1 ∼ µ2

5 r′ ← r // temporary pointer to iterate over all compatible µ2 ∈ Ω′
i

6 while µ1 ∼ µ2 do
7 // emit merge of µ1, µ2 if it passes the bloom filter
8 // membership test for the next join key k′′

9 if (µ1 ∪ µ2)(k′′) ∈ bloom(Ω′′
i) then

emit{(µ1 ∪ µ2)(k′′), (µ1 ∪ µ2)}
10 r′ ← r′ + 1, µ2 ← Ω′

i[r
′]

11 end
12 l← l + 1
13 else µ1 � µ2

14 if µ1(k′) < µ2(k′) then l← l + 1 else r ← r + 1
15 end
16 end

C. N-Way Merge Join

If the join key is the same in a sequence of n 2-way
merge joins, we can also compute the result with a single
n-way merge join, thus saving n − 1 MapReduce iterations.
In our example, the join key for both 2-way join iterations is
?article1, so we could also use a single 3-way join instead.
The basic principle is the same as for the 2-way join but
instead of two subsets each machine joins n subsets in a
single map phase, i.e. (Ω1

i on · · · on Ωni). Just like for the
2-way join, it cannot be guaranteed that all n subsets with
the same key range are stored on the same machine, hence
the missing subsets must be transferred to the corresponding
machine at the beginning of the map phase. Input partition
selection and also post-processing in the reduce phase is the
same as for the 2-way join. The 2-way merge join algorithm
in Algorithm 1 can be easily extended for n-way merge joins
using n interleaved linear scans instead of two. However, a
disadvantage of the n-way join compared to a sequence of
2-way joins is that we do not benefit from bloom filters for
intermediate results. Hence, we can only apply bloom filters
on the results of the n-way join (if another join iteration
follows). Yet, our experiments demonstrate that, in general, the
saving of MapReduce iterations has a greater impact on query
performance than discarding dangling intermediate results.

VI. EXPERIMENTS

The experiments were performed on a cluster of ten
machines equipped with a 6 core Xeon E5-2420 CPU (1.9
GHz) and 32 GB RAM connected via gigabit network using
the Hadoop distribution of Cloudera in version 4.2.1. We used
the well-known Lehigh University Benchmark (LUBM) [12]
and generated datasets from 500 up to 3000 universities where
we pre-computed the transitive closure using the WebPIE
inference engine for Hadoop [16]. The store generation
runtimes and dataset sizes are listed in Table I. We can
observe that the actual store size is even smaller than the
size of the original RDF graph. This is achieved by replacing
prefixes and applying snappy compression which reduced the
original dataset size by up to 92%.

TABLE I. GENERATING RDF DATA STORE

LUBM 500 1000 1500 2000 2500 3000

triples (million) 105 210 315 420 525 630
input size (GB) 17.0 34.1 51.3 68.5 85.7 102.9
overall store size (GB) 13.6 27.3 41.0 54.8 68.6 82.3
store generation (minutes) 68 111 154 193 241 279

We compared our merge join approach with three systems
based on MapReduce. (1) HadoopRDF [5] is an advanced
SPARQL engine that splits the original RDF graph according
to predicates and objects and utilizes a cost-based query
execution plan for reduce-side joins. (2) MAPSIN [17] is a
map-side index nested loop join implementation based on
HBase. It processes joins within the map phase and exploits n-
way joins by a sophisticated storage schema that significantly
reduces the amount of HBase lookups. (3) PigSPARQL [6] is
a reduce-side join based SPARQL 1.0 query engine built on
top of Apache Pig. The crucial point for this choice was the
sophisticated reduce-side join implementation of Pig [18] that
incorporates sampling and hash join techniques.

Figure 7 illustrates the scaling properties of our merge join
approach. We can observe a linear scaling of query runtimes
where tripling the dataset size does not even take twice the
time for most queries. A comparison of execution times (wall
time) to other approaches is summarized in Table II. MAPSIN
lacks the support for LUBM queries 2, 9 and 10 whereas
HadoopRDF runs out of storage space while creating its
storage schema for datasets larger than LUBM 20004. We
considered a time-out of one hour, denoted by T, if a query
fails to complete in time.

Queries 6 and 14 are simple and require no join at all.
Nevertheless, our approach outperforms the other systems
significantly as the whole processing is done locally on all
cluster machines without any reduce phase. One may expect
MAPSIN to be the fastest for such queries, since a single table
lookup could provide the final result. However, such a request
would push the result to only one machine violating the scaling
properties. Therefore, MAPSIN processes such single pattern
queries by a distributed table scan which is executed on each
machine preserving scalability.

Queries 1, 3, 5 and 13 contain only one join. Our approach
processes these queries within a single map phase as no
additional processing for a subsequent join is required. Overall,
the merge join performs best for these kind of queries.

Query 2 is rather complex (compared to other LUBM
queries) as it exhibits a triangular pattern structure. Moreover,
it contains a costly and unselective subject-object and object-
subject join that points out a weakness of our approach. As
both join partitions must use the same key ranges, one of the
input partitions is fairly unbalanced (cf. Section IV) which
increases the costs for join processing. Thus, it is a point of
future work to develop more sophisticated sampling strategies
for key ranges to improve data distribution for such cases.

Queries 7, 8 and 9 demonstrate the base case where several
joins have to be processed sequentially. For these queries, the
reduce phase is required to sort the join output according to the

4We contacted the authors since neither a documentation nor an “out-of-the-
box” running system was available, unfortunately we didn’t get any support.

500 1000 1500 2000 2500 3000

25
50
75

100
125
150
175

#universities

ru
nt

im
e

(s
)

1000 2000 3000

200
400
600
800

1000

#universities
Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q8 Q9 Q10 Q11 Q13 Q14

Fig. 7. Runtimes for all LUBM queries (Merge Join).

join key of the next iteration whereas bloom filters are used to
remove dangling intermediate results. For queries 7 and 8 we
can observe a quite competitive performance of our approach
compared to both reduce-side join based systems. Indeed, such
selective queries are the core of MAPSIN, where it benefits
from its index structure accessing only those triples that are
relevant for the query answer. Nonetheless, query runtimes of
MAPSIN are close to the runtimes of the merge join approach.

Query 4 is a star pattern query which makes it a good
candidate for n-way joins. Figure 8.a illustrates a comparison
between 2-way and n-way execution for Merge Join, MAPSIN
and PigSPARQL as these systems support n-way joins. In all
cases, n-way joins clearly outperform a sequential execution of
2-way joins, while the benefit for our merge join approach is
less than for the others. Reducing the amount of MapReduce
cycles comes at the cost of more data that has to be processed
at once. As we cannot guarantee that all n matching subsets
reside on the same machine, more data has to be accessed
remotely. This is underpinned by Figure 8.b that shows the
amount of data accessed locally and retrieved remotely within
a map-side merge join. However, the difference is much less
than expected. Processing query 4 with one 5-way merge join
compared with several 2-way merge joins increases the amount
of data retrieved remotely by only 32% while decreasing the
amount of data accessed locally by 34%. This can be explained
due to the fact that data is stored with an replication factor
of three which increases the chances that matching subsets
reside on the same machine. Except for n-way joins, the
amount of data accessed locally within a merge join is always
higher than the amount of data retrieved remotely, which is
an expected behavior since we choose the larger dataset to be
processed locally. Nevertheless, since data locality is a crucial
point for distributed systems, improving these values, e.g. by
a refinement of the data placement strategy wrt. matching
subsets, is a worthwhile point for future optimizations.

The average performance benefit of our Merge Join com-
pared to the other systems is between 15% and 48%. In order
to compare the performance of the different systems we com-
puted for each query the relative difference of execution time to
the respective best case. Then, for each system the average of
these relative differences over all queries is computed, whereas
missing measure points are replaced with a weak penalty value.
The penalty is based on the average of all systems that perform
worse than the best execution time. Finally, we computed the
relative performance distance of other systems to our approach
(c.f. “relative perf.” in Table II). For example, if we refer to
LUBM 1000, we can derive that PigSPARQL (72%) is in
comparison with Merge Join (100%) on average 28% slower.

TABLE II. QUERY EXECUTION TIMES FOR MERGE JOIN, MAPSIN, PIGSPARQL AND HADOOPRDF IN SECONDS. T: TIME-OUT

LUBM query 1 2 3 4 5 6 7 8 9 10 11 13 14 relative
perf.

10
00

Merge Join 36 405 31 63 33 15 71 58 179 43 13 28 16 100%
MAPSIN 32 — 30 35 33 45 60 60 — — 32 42 42 85%
PigSPARQL 42 199 42 63 43 28 135 141 233 42 33 43 27 72%
HadoopRDF 48 136 58 104 59 51 148 298 208 55 1585 186 54 52%

15
00

Merge Join 45 574 40 85 41 16 101 74 247 55 13 35 17 100%
MAPSIN 49 — 41 51 43 58 66 75 — — 44 70 70 82%
PigSPARQL 53 233 53 84 48 32 176 166 279 53 38 48 32 75%
HadoopRDF 61 174 71 149 74 54 189 389 233 63 T 193 59 58%

20
00

Merge Join 61 750 52 117 56 18 120 93 311 75 13 46 18 100%
MAPSIN 52 — 47 60 52 67 93 92 — — 51 81 78 85%
PigSPARQL 64 283 63 94 58 38 216 212 329 63 49 53 42 78%
HadoopRDF 77 196 80 174 86 58 215 457 257 68 T 206 62 63%

25
00 Merge Join 71 935 60 138 63 20 141 107 366 86 13 53 19 100%

MAPSIN 69 — 58 80 65 82 110 105 — — 65 102 87 81%
PigSPARQL 73 335 68 119 64 48 252 247 399 74 58 64 47 79%

30
00 Merge Join 81 1099 67 153 71 25 167 124 432 98 14 57 24 100%

MAPSIN 81 — 70 89 78 98 120 119 — — 74 125 105 80%
PigSPARQL 83 385 78 135 74 53 281 287 460 83 69 68 53 80%

500 1000 1500 2000 2500 3000
20
60

100
140
180
220
260

#universities

ru
nt

im
e

(s
)

Merge Join (n-way)
Merge Join (2-way)
MAPSIN (n-way)
MAPSIN (2-way)
PigSPARQL (n-way)
PigSPARQL (2-way)
HadoopRDF

Q2 Q3 Q4(2w) Q4(nw) Q6 Q8 Q9 Q10 Q11 Q14
0

0.5

1

1.5

2
·104

m
ap

in
pu

t
(M

B
) local data

remote data

Fig. 8. (a) Comparison of n-way optimizations for LUBM Query 4. (b) Comparison of local and remote data access within a map-side merge join.

Overall, the experiments showed that our map-side merge
join approach exhibits in most cases competitive runtimes with
a performance benefit of 15% to 48% on average over all
queries. It works best for single join queries but performs
also good for sequences of joins. However, unselective subject-
object or object-subject joins turned out to be a weak point,
especially if one join input side is fairly unbalanced. But
even for those queries, the differences to the fastest query
execution times are still acceptable while showing an excel-
lent scaling behavior at all time. Moreover, our store layout
enables retrieving one pattern queries even faster than the
index-based query execution of MAPSIN. Taken into account
that improving data locality by adopting more suitable data
placement strategies for Hadoop and preventing unbalanced
partitions by more sophisticated partitioning strategies will
further improve query execution times, we can conclude that
map-side merge joins are well suited for processing SPARQL
BGPs with MapReduce.

VII. RELATED WORK

In terms of mere query performance, RDF-3X [19] has
established itself as the state-of-the-art “benchmark” engine
for single place machines. However, its performance has been
shown to degrade for queries with unbound objects and low
selectivity factors [5]. Furthermore, with the ever increasing
amount of available RDF data, single machine solutions for
query processing become more and more challenging [4].
Thus, a number of systems that focus on distributed execution
of SPARQL queries have been proposed in recent years
(e.g. [20], [21], [22]). Since each of these implementations

require some dedicated infrastructure and management, there
are no synergy effects by reusing already deployed frame-
works. Our research is driven by the idea to reuse existing
infrastructures for “Big Data” scenarios. Consequently, we
have ensured that no changes to the underlying Hadoop
framework are required to run our SPARQL BGP engine. This
way, existing Hadoop clusters or cloud services (e.g. Amazon
EC2) can used without any changes.

The efficent computation of joins is the main driver for
the performance of SPARQL BGP evaluation, and thus we
have focused on join processing in MapReduce in this paper.
This topic has already been studied considering various aspects
and application fields [23], [24], [13], [25], [26]. In [25] the
authors discussed how to process arbitrary joins (θ joins) using
MapReduce, whereas [23] focuses on optimizing n-way joins.
θ joins are not required for the evaluation of SPARQL BGPs,
and they are not supported by our solution. The execution
of n-way joins is a generalization of our 2-way join, where
instead of two all n pre-sorted input partitions are processed
in a single map phase. Map-Reduce-Merge [26] describes a
modified MapReduce workflow by adding a merge phase after
the reduce phase, whereas Map-Join-Reduce [24] proposes
a join phase in between the map and reduce phase. Both
techniques attempt to improve the support for joins in MapRe-
duce but require profound modifications to the MapReduce
framework. In [27] the authors present non-invasive index and
join techniques for SQL processing in MapReduce that also
reduce the amount of shuffled data at the cost of an additional
co-partitioning and indexing phase at load time. However, the
schema and workload is assumed to be known in advance

which is typically feasible for relational data but does not hold
for RDF in general. HadoopDB [28] is a hybrid of MapReduce
and DBMS where MapReduce is the communication layer
above multiple single node DBMS. The authors in [4] adopt
this hybrid approach for the Semantic Web using RDF-3X.
Initially, they partition the graph on a single machine in a
loading phase. We also initially store the dataset wrt. different
sort orders but we employ the MapReduce framework to par-
tition the dataset at loading time. Common to both approaches
is that data has to be reloaded in case of updates, while we do
not require the installation of additonal engines at each cluster
node. HadoopRDF [5] is a MapReduce based RDF system
that stores data directly in HDFS and does also not require
any changes to the Hadoop framework. It is able to rebalance
automatically when cluster size changes but join processing
is also done in the reduce phase. As already mentioned, our
join processing is done in the map phase and additionally
we reduce the amount of data sent over the network by pro-
actively filtering dangling tuples using bloom filters.

VIII. CONCLUSION

In the area of “Big Data” applications, MapReduce has
become a state-of-the-art technology for large-scale data pro-
cessing. On the other side, the advent of the Semantic Web pro-
motes the growing adoption of RDF and SPARQL as its core
technologies, raising attention for distributed SPARQL query
processing in current research. As basic graph patterns, which
are at the core of SPARQL, translate to the computation of
joins on the operator level, efficient distributed join techniques
for RDF are of particular interest. The fixed ternary structure
of RDF makes it a well suited candidate for sort-merge joins
as presorting the data is affordable. In this paper we presented
an adaptation of sort-merge joins for SPARQL basic graph
patterns with MapReduce which supports both 2-way and n-
way joins. The actual join computation is completely done
in the map phase, complemented by bloom filters to discard
dangling intermediate results, while the reduce phase is used
to post-process the join output for subsequent join iterations.
Our experiments with the LUBM bechmark demonstrated an
average performance benefit between 15% and 48% of our
approach compared to other MapReduce based systems while
scaling smoothly with the dataset size. For future work, we
will consider refinements of the data placement strategy to
further optimize data locality as well as techniques to handle
data skew in parallel joins.

REFERENCES

[1] R. Sumbaly, J. Kreps, and S. Shah, “The Big Data Ecosystem at
LinkedIn,” in SIGMOD Conference, K. A. Ross, D. Srivastava, and
D. Papadias, Eds. ACM, 2013, pp. 1125–1134.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[3] F. Manola, E. Miller, and B. McBride. (2004) RDF Primer. W3C
Recom. W3C. [Online]. Available: http://www.w3.org/TR/rdf-primer/

[4] J. Huang, D. J. Abadi, and K. Ren, “Scalable SPARQL Querying of
Large RDF Graphs,” PVLDB, vol. 4, no. 11, pp. 1123–1134, 2011.

[5] M. F. Husain, J. P. McGlothlin, M. M. Masud, L. R. Khan, and B. M.
Thuraisingham, “Heuristics-Based Query Processing for Large RDF
Graphs Using Cloud Computing,” IEEE TKDE, vol. 23, no. 9, 2011.

[6] A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen, “PigSPARQL:
Mapping SPARQL to Pig Latin,” in Proceedings of the International
Workshop on Semantic Web Information Management (SWIM), 2011,
pp. 4:1–4:8.

[7] E. Prud’hommeaux and A. Seaborne. (2008) SPARQL Query
Language for RDF. W3C Recom. W3C. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query/

[8] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and Complexity of
SPARQL,” ACM Transactions on Database Systems (TODS), vol. 34,
no. 3, p. 16, 2009.

[9] G. Graefe, “Query Evaluation Techniques for Large Databases,” ACM
Comput. Surv., vol. 25, no. 2, pp. 73–170, 1993.

[10] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[11] D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and Network Applica-
tions of Dynamic Bloom Filters,” in INFOCOM, 2006.

[12] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A Benchmark for OWL
Knowledge Base Systems,” Web Semantics, vol. 3, no. 2, pp. 158 –
182, 2005.

[13] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel Data
Processing with MapReduce: A Survey,” SIGMOD Record, vol. 40,
no. 4, pp. 11–20, 2011.

[14] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, “Scalable
Semantic Web Data Management Using Vertical Partitioning,” in VLDB,
2007, pp. 411–422.

[15] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen, “Handling Data Skew in
Parallel Joins in Shared-Nothing Systems,” in Proceedings of the 2008
ACM SIGMOD international conference on Management of data, ser.
SIGMOD ’08, 2008, pp. 1043–1052.

[16] J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, and H. E. Bal,
“WebPIE: A Web-scale Parallel Inference Engine using MapReduce,”
J. Web Sem., vol. 10, pp. 59–75, 2012.

[17] A. Schätzle, M. Przyjaciel-Zablocki, C. Dorner, T. Hornung, and
G. Lausen, “Cascading Map-Side Joins over HBase for Scalable Join
Processing,” in Joint Workshop on Scalable and High-Performance
Semantic Web Systems (SSWS+ HPCSW 2012), 2012, p. 59.

[18] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayana-
murthy, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava, “Building
a High-Level Dataflow System on top of Map-Reduce: The Pig Expe-
rience,” PVLDB, vol. 2, no. 2, 2009.

[19] T. Neumann and G. Weikum, “RDF-3X: a RISC-style engine for RDF,”
PVLDB, vol. 1, no. 1, pp. 647–659, 2008.

[20] O. Erling, “Virtuoso, a Hybrid RDBMS/Graph Column Store,” IEEE
Data Eng. Bull., vol. 35, no. 1, pp. 3–8, 2012.

[21] S. Harris, N. Lamb, and N. Shadbolt, “4store: The Design and Imple-
mentation of a Clustered RDF Store,” in SSWS, 2009, pp. 94–109.

[22] A. Harth, J. Umbrich, A. Hogan, and S. Decker, “YARS2: A Federated
Repository for Querying Graph Structured Data from the Web,” The
Semantic Web, 2007.

[23] F. N. Afrati and J. D. Ullman, “Optimizing Multiway Joins in a Map-
Reduce Environment,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 9,
pp. 1282–1298, 2011.

[24] D. Jiang, A. K. H. Tung, and G. Chen, “Map-Join-Reduce: Toward
Scalable and Efficient Data Analysis on Large Clusters,” IEEE TKDE,
vol. 23, no. 9, pp. 1299–1311, 2011.

[25] A. Okcan and M. Riedewald, “Processing Theta-Joins using MapRe-
duce,” in SIGMOD Conference, 2011, pp. 949–960.

[26] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. P. Jr., “Map-Reduce-
Merge: Simplified Relational Data Processing on Large Clusters,” in
SIGMOD, 2007.

[27] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad, “Hadoop++: Making a Yellow Elephant Run Like a Cheetah
(Without It Even Noticing),” PVLDB, vol. 3, no. 1, pp. 518–529, 2010.

[28] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and
A. Silberschatz, “HadoopDB: An Architectural Hybrid of MapReduce
and DBMS Technologies for Analytical Workloads,” PVLDB, vol. 2,
no. 1, pp. 922–933, 2009.

