RDFPath: Path Query Processing on Large
RDF Graphs with MapReduce

Martin Przyjaciel-Zablocki, Alexander Schétzle,
Thomas Hornung, and Georg Lausen

Lehrstuhl fiir Datenbanken und Informationssysteme
Albert-Ludwigs-Universitat Freiburg
Georges-Kohler-Allee 51
79110 Freiburg im Breisgau
{zablocki,schaetzl,hornungt,lausen}@informatik.uni-freiburg.de

Abstract. The MapReduce programming model has gained traction in
different application areas in recent years, ranging from the analysis of
log files to the computation of the RDFS closure. Yet, for most users the
MapReduce abstraction is too low-level since even simple computations
have to be expressed as Map and Reduce phases. In this paper we pro-
pose RDFPath, an expressive RDF path query language geared towards
casual users that benefits from the scaling properties of the MapReduce
framework by automatically transforming declarative path queries into
MapReduce jobs. Our evaluation on a real world data set shows the
applicability of RDFPath for investigating typical graph properties like
shortest paths.

Keywords: MapReduce, RDFPath, RDF Query Languages, Social Net-
work Analysis, Semantic Web.

1 Introduction

The proliferation of data on the Web is growing tremendously in recent years.
According to Eric Schmidt, CEO of Google, more than five Exabyte of data are
generated collectively every two days, which corresponds to the whole amount
of data generated up to the year 2003]. Another example is Facebook with
currently more than 500 million active users interacting with more than 900
million different objects like pages, groups or events.

In a Semantic Web environment this data is typically represented as a RDF
graph [20], which is a natural choice for social network scenarios [21], thus facili-
tating exchange, interoperability, transformation and querying of data. However,
management of large RDF graphs is a non-trivial task and single machine ap-
proaches are often challenged with processing queries on such graphs [30]. One
solution is to use high performance clusters or to develop custom distributed
systems that are commonly not very cost-efficient and also do not scale with
respect to additional hardware [TI89].

! http://techonomy.com

R. Garcfa-Castro et al. (Eds.): ESWC 2011 Workshops, LNCS 7117, pp. 50-{64] 2011.
© Springer-Verlag Berlin Heidelberg 2011

http://techonomy.com

RDFPath: Path Query Processing on Large RDF Graphs with MapReduce 51

The MapReduce programming model introduced by Google in [8] runs on
regular off-the-shelf hardware and shows desirable scaling properties, e.g. new
computing nodes can easily be added to the cluster. Additionally, the distri-
bution of data and the parallelization of calculations is handled automatically,
relieving the developer from having to deal with classical problems of distributed
applications such as the synchronization of data, network protocols or fault tol-
erance strategies. These benefits have led to the application of this programming
model to a number of problems in different areas, where large data sets have to
be processed [TJ2l7]. One line of research is centered around the transformation of
existing algorithms into the MapReduce paradigm [19], which is a time consum-
ing process that requires substantial technical knowledge about the framework.
More in line with the approach presented in this paper is the idea to use a declar-
ative high-level language and to provide an automatic translation into a series
of Map and Reduce phases as proposed in [I5]29] for SPARQL and in [24] for
Pig Latin, a data processing language for arbitrary data.

Contributions. In this paper we present RDFPath, a declarative path query
language for RDF that by design has a natural mapping to the MapReduce
programming model while remaining extensible. We also give details about our
system design and implementation. By its intuitive syntax, RDFPath supports
the exploration of graph properties such as shortest connections between two
nodes in a RDF graph. We are convinced that RDFPath is a valuable tool for
the analysis of social graphs, which is highlighted by our evaluation on a real-
world data set based on user profiles crawled from Last.fm. The implementation
of RDFPath is available for download from our project homepageﬁl.j

Related Work. There is a large body of work dealing with query languages for
(RDF) graphs considering various aspects and application fields [6ITO/T2/T7I2734].
Besides classical proposals for graphs as introduced in [27] and in [I7] with RQL,
there are also many proposals for specific RDF graph languages (cf. [G/T0/T2] for
detailed surveys). Taking this into account, we extended the proposed compar-
ison matrix for RDF query languages from [4/5] by two additional properties,
namely the support for shortest path queries and aggregate functions, as well as
the additional RDF query languages SPARQL [26], RPL [34], and RDFPath, as
depicted in Table [l For a more detailed description of the properties occurring
in Table[Il the interested reader is referred to [5].

According to Table [RDFPath has a competitive expressiveness to other
RDF query languages. For the missing diameter property, which is not consid-
ered in any of the listed languages, a MapReduce solution has been proposed
in [16], regardless of a syntactically useful integration into any path query lan-
guage. There are also further approaches to extend SPARQL with expressive
navigational capabilities such as nSPARQL [25], (C)PSPARQL [3] as well as

2http://dbis.informatik.uni-freiburg.de/?project=DiPoS/RDFPath.html

http://dbis.informatik.uni-freiburg.de/?project=DiPoS/RDFPath.html

52 M. Przyjaciel-Zablocki et al.

Table 1. Comparison of RDF Query Languages (adapted from [4lJ5])

SeRQL,
Property RQL|RDQL?, [N3|Versa|RxPath|RPL SlP gqulL RDFPath

Triple ' '
Adjacent nodes + + +| % X vV NV Vv
Adjacent edges + + X | X X X v Y 4
Degree of a node + X X X X X X/ 4
Path X X X X + + X £ +
Fixed-length Path + + +| X + + v Vv Vv
Distance between 2 nodes| Xx X X X X X X X +
Diameter X X X X X X X X X
Shortest Paths X X X X X X X X +
Aggregate functions + X X X + X X/ +

(x: not supported, +: partially supported, /: fully supported)

property paths, that are a part of the proposal for SPARQL 1.1H. In contrast,
we focus on path queries and study their implementation based on MapReduce.
A more detailed discussion on SPARQL 1.0 and especially the current SPARQL
1.1 working draft can be found in the appendix.

Another area, which is related to our research, is the distributed processing
of large data sets with MapReduce. Pig is a system for analyzing large data
sets, consisting of the high-level language Pig Latin [24] that is automatically
translated into MapReduce jobs. Furthermore there are serveral recent approches
for evaluating SPARQL queries with MapReduce [I5l22I29]. However, because of
the limited navigational capabilities of SPARQL [25], as opposed to RDFPath,
these approaches do not offer a sufficient functionality to support a broad range
of analysis tasks for RDF graphs.

Besides the usage of a general purpose MapReduce cluster, some systems rely
on a specialized computer cluster. Virtuoso Cluster Edition [J] is a cluster ex-
tension of the RDF Store Virtuoso and BigOWLIME] is a RDF database engine
with extensive reasoning capabilities, both allowing to store and process bil-
lions of triples. In [32] the authors propose an extension of Sesame for querying
distributed RDF' repositories. However, such specialized clusters have the dis-
advantage that they require individual infrastructures, whereas our approach is
based on a general framework that can be used for different purposes.

Paper Structure. Section [2] provides a brief introduction to the MapReduce
framework. Section B] introduces the RDFPath language, while Section M dis-
cusses the components of the implemented system and the evaluation of RDF-
Path queries. Section [l presents our system evaluation based on a real-world
data set and Section [6] concludes this paper with an outlook on future work.

3 1In [14] the authors describe how to extend RDQL to support aggregates.
4http://www.w3.org/TR/sparqlil-query
5 http://www.ontotext.com/owlim

http://www.w3.org/TR/sparql11-query
http://www.ontotext.com/owlim

RDFPath: Path Query Processing on Large RDF Graphs with MapReduce 53

2 MapReduce

The MapReduce programming model was originally introduced by Google in
2004 [8] and enables scalable, fault tolerant and massively parallel calculations
using a computer cluster. The basis of Google’s MapReduce is the distributed
file system GFS [II] where large files are split into equal sized blocks, spread
across the cluster and fault tolerance is achieved by replication. The workflow of
a MapReduce program is a sequence of MapReduce jobs each consisting of a Map
and a Reduce phase separated by a so-called Shuffle & Sort phase. A user has
to implement the map and reduce functions which are automatically executed
in parallel on a portion of the data. The Mappers invoke the map function for
every record of their input data set represented as a key-value pair. The map
function outputs a list of new intermediate key-value pairs which are then sorted
according to their key and distributed to the Reducers such that all values with
the same key are sent to the same Reducer. The reduce function is invoked for
every distinct key together with a list of all according values and outputs a list of
values which can be used as input for the next MapReduce job. The signatures
of the map and reduce functions are therefore as follows:

map: (inKey, inValue) -> list(outKey, intermediateValue)
reduce: (outKey, list(intermediateValue)) -> list(outValue)

3 RDFPath

A RDF data set consists of a set of RDF triples in the form <subject, predicate,
object> that can be interpreted as ” subject has the property predicate with value
object”. It is possible to represent a RDF data set as directed, labeled graph
where every triple corresponds to an edge (predicate) from one node (subject)
to another node (object). For clarity of presentation, we use a simplified RDF
notation without URI prefixes in the following. Strings and numbers are mapped
to their corresponding datatypes in RDF.

Executing path queries on very large RDF data sets like social network graphs
with billions of entries is a non-trivial task that typically requires many resources
and computational power [1II8[9I2TI30]. RDFPath is a declarative RDF path
query language, inspired by XPath and designed especially with regard to the
MapReduce model. A query in RDFPath is composed by a sequence of location
steps where the output of the i*" location step is used as input for the (i + 1)**
location step. Conceptually, a location step adds one or more additional edges
and nodes to an intermediate path that can be restricted by filters. The result of
a query is a set of paths, consisting of edges and nodes of the given RDF graph.
In the following we give an example-driven introduction to RDFPath.

3.1 RDFPath By Example

Start Node. The start node is the first part of a RDFPath query, separated by
"::" from the rest of the query and specifies the starting point for the evaluation

54 M. Przyjaciel-Zablocki et al.

of a path query as shown in Query[Il Using the symbol "*" indicates an arbitrary
start node where every subject with the denoted predicate of the first location
step is considered (see Query [2)).

Chris :: knows (1)

* :: knows (2)
Location Step. Location steps are the basic navigational component in RDF-
Path, specifying the next edge to follow in the query evaluation process. The
usage of multiple location steps, separated by ">", defines the order as well as
the amount of edges followed by the query (Query [3). If the same edge is used
in several consecutive location steps one can use an abbreviation by specifying
the number of iterations within parentheses as shown in Query [l Instead of
specifying a fixed edge, the symbol "*" can be used to follow an arbitrary edge
as illustrated in Query [0l that determines all adjacent edges and nodes of Chris.

Chris :: knows > knows > age (3)
Chris :: knows (2) > age (4)
Chris :: * (5)

Filter. Filters can be specified within any location step using square brackets.
There are two types of filters to constrain the value (Queries[6l [7]) or the proper-
ties (Query[8)) of a node reached by the location step. Multiple filters are specified
in a sequence and a path has to satisfy all filters. If a node does not have the
desired property, the filter evaluates to false. Up to now, the following filter
expressions are applicable: equals (), prefix(), suffix(), min(), max().

Chris :: knows > age [min(18)] [max(67)] (6)
Chris :: * > * [equals(’Peter’)] (7)

Chris :: knows [age = min(30)] [country = prefix(’D’)] > name (8)

Bounded Search. This type of query starts with a fixed node and computes
the shortest paths between the start node and all reachable nodes within a
user-defined bound. For this purpose we extend the notation of the previously
introduced abbreviations with an optional symbol "*". While the abbreviations
indicate a fixed length, the "*" symbol indicates to use the number as upper
bound for the maximum search depth. As an example, in Query [A we search for
all German people with a maximum distance of three to Chris.

Chris :: knows [country = equals(’DE’)] (*3) 9)

Bounded Shortest Path. This type of query computes the shortest path
between two nodes in the graph with a user-defined maximum distance. As
we are often interested in the length of the path, the query outputs the shortest
distance and the corresponding path between two given nodes. To do this one has
to extend a bounded search query with a final distance () function specifying
the target node as shown in Query

RDFPath: Path Query Processing on Large RDF Graphs with MapReduce 55

Chris :: knows (*3).distance(’Peter’) (10)

Aggregation Functions. It is possible to count the number of resulting paths
for a query (Query[Idlcalculates the degree of Chris) or to apply some aggregation
functions to the last nodes of the paths, respectively. The following functions
are available: count(), sum(), avg(), min() and max(). It should be noted
that aggregation functions can only be applied to nodes of numeric type (e.g.
integer or double) as shown in Query 121

Chris :: *.count() (11)
Chris :: knows > age.avg() (12)

Example. Figure[llshows the evaluation of the last location step of Query[I3on
the corresponding RDF graph. The second path is rejected as the age of Sarah
does not satisfy the filter condition.

Chris :: knows [country=prefix(’D’)] > knows > age [min(30)] (13)

........
country
————— >
age
................. >
result:
Chris (knows) Peter [country=’DE’] (knows) Simon (age) ‘42’
Chris{knews)Al fecuntry=LDOl] {knows)—Sarah {age) —25L

Fig. 1. RDFPath Example

3.2 [Expressiveness

In this section we will evaluate the expressiveness of RDFPath w.r.t. the prop-
erties listed in Table[Il A detailed discussion can be found on our project home-
page@ and in [28]. Query [Bl shows an example for the calculation of all adjacent
edges and nodes of a node by using the symbol "*" instead of specifying a fixed
edge. Query[[T] calculates the degree of a node by applying the aggregation func-
tion count() on the resulting paths and Query [7 gives all paths with a fized
length of two from Chris to Peter by specifying two location steps with arbi-
trary edges. The properties path, distance between 2 nodes and shortest paths
are only partially supported by RDFPath because in general to answer these
properties one has to calculate paths of arbitrary length where RDFPath only
supports paths of a fixed maximum length. Furthermore aggregation functions
are partially supported as they can only be applied in the last location step of a
query.

Shttp://dbis.informatik.uni-freiburg.de/?project=DiPoS/RDFPath.html

http://dbis.informatik.uni-freiburg.de/?project=DiPoS/RDFPath.html

56 M. Przyjaciel-Zablocki et al.

4 Query Evaluation

We implemented RDFPath based on the well-known Apache Hadoop Frame-
work, an open source implementation of Google’s MapReduce and GFS. Our
system loads the considered RDF graph into the Hadoop Distributed File Sys-
tem (HDFS) once in advance, translates RDFPath queries into a sequence of
MapReduce jobs, executes them in the framework and stores the results again
in HDFS. A location step in RDFPath mostly follows a fixed edge (predicate)
which means that only a portion of the RDF graph has to be considered in many
cases. In these cases, it is advantageous to read only those triples concerning the
relevant edge which can be achieved by partitioning the triples of the RDF graph
according to their predicates. This principle is also knows as wvertical partition-
ing [2] and forms the basis of our data model. Hence an input RDF graph is
loaded in advance to apply vertical partitioning and store resulting partitions
in HDFS. Certainly, in the case of a not fixed edge ("*" symbol), all partitions
must be considered and we cannot benefit from this strategy.

1
[Query Parser Query Processor:I

|)

: /2 Instruction 1] I
| [Instruction Sequence]Z\[= :
i ! J

L

Instruction n

[\ 1
:::::[Instruction].'__:____:__:__:____:__:____:__:__::_J
: Interpreter Query Enginel
1
| \J, Assignment 1 1
|
| [MapReduce Plan :
I ..
| Assignment n :
! I
! I
L
___________ e
1 I
i MapReduce] Hadoop ClusterI
f Framework (HDFS] 1
N —— N)
[Results]

Fig. 2. Query Processing

The Query Processor parses the query and generates a general execution plan
that consists of a sequence of instructions where each instruction describes e.g.
the application of a filter, join or aggregation function. In the next step, the
general execution plan is mapped to a specific MapReduce plan that consists of
a sequence of MapReduce assignments. An assignment encapsulates the specific
MapReduce job together with a job configuration. The Query Engine runs the
MapReduce jobs in sequence, collects information about the computation process
like time and storage utilization and cleans up temporary files. A schematic
representation of this procedure is shown in Figure

RDFPath: Path Query Processing on Large RDF Graphs with MapReduce 57

Fault-tolerance, i.e. relaunching failed tasks, is managed by the Hadoop frame-
work automatically. Currently there are no join-ordering optimizations imple-
mented to determine the best join execution order as proposed in [32], for exam-
ple. A query in RDFPath is processed sequentially from left to right. Although
queries in RDFPath do not need to have a fixed start node, this is often advis-
able as arbitrary start nodes dramatically increase the number of intermediate
results in general. For queries with a fixed start node, a processing order from
left to right can often cut down the costs for processing a sequence of joins, as
it usually corresponds to the most selective join-order. In other cases, e.g. fixed
start node combined with fixed end node for computing shortest paths, it is
likely that join-ordering optimizations could have a significant impact on query
evaluation time and space [32].

4.1 Mapping of Location Steps to MapReduce Jobs

A query in RDFPath is composed of a sequence of location steps that is trans-
lated into a sequence of MapReduce jobs automatically. As illustrated in Figure[3]
a location step corresponds to a join in MapReduce between an intermediate set
of paths and the corresponding RDF graph partition. Joins are implemented as
so-called Reduce-Side-Joins since the assumption of the more efficient Map-Side-
Joins that both inputs must be sorted is not fulfilled in general. The principles
of Reduce-Side-Joins can be looked up in [T9/33]. Filters are applied in the Map
phase by rejecting all triples that do not satisfy the filter conditions and ag-
gregation functions are computed in parallel in the Reduce phase of the last
location step. The computation of shortest paths is based on a parallel breadth-
first search approach and requires at most one additional MapReduce job for
selecting shortest paths. This selection is usually applied in the subsequent lo-
cation step. If there is no subsequent location step, an additional MapReduce
job becomes necessary. We also implemented a mechanism to detect cycles when
extending an intermediate path where the user can decide at runtime whether
(1) cycles are allowed, (2) only allowed if the cycle contains two or more distinct
edges or (3) not allowed at all. Considering Figure Bl the given query requires
two joins and is therefore mapped into a MapReduce plan that consists of two
MapReduce jobs. While the first job computes all friends of ”Chris” that can be
reached by following the edge knows at most two times, the second MapReduce
job follows the edge country and restricts the value to "DE”.

Chris knows (*2) A > country [equals ('DE’)]/.
intermediate paths coﬁmry
Chris (knows) Peter (knows) Simon g Shmen—~oH
Chris (knows) Peter 8 Peter DE
Chris (knows) Frank Bl Frank—CH

Fig. 3. Joins and Location Steps

58 M. Przyjaciel-Zablocki et al.

5 Evaluation

We evaluated our implementation on two different data sources to investigate
the scalability behavior. First, we used artificial data produced by the SP?Bench
generator [31] which allows to generate arbitrary large RDF documents that
contain bibliographic information about synthetic publications. The generated
RDF documents contained up to 1.6 billion RDF triples. Second, we collected
225 million RDF triples of real world data from the online music service Last.fm
that are accessible via a public API. Due to space limitations we only discuss
some results for the Last.fm dataset, which is a more appropriate choice for path
queries and can also be interpreted in a more intuitive way. Figure [illustrates
the dataset.

| Realname | | Country | | Duration |
X %"_ 8_ ;_ > 8 g_ 8 I 5 o listenedTo+
] gggmmmvmmr\ topTracks
D s e P

Fig. 4. (a) Histogram of Last.fm data (b) Simplified RDF graph of the Last.fm data set.
The missing edge labels are named like the target nodes. In the case of ambiguity, the
edge label is extended by the type of source (e.g. trackPlaycount and albumPlaycount).

We used a cluster of ten Dell PowerEdge R200 servers connected via a gigabit
network and Cloudera’s Distribution for Hadoop 3 Beta (CDH3). Each server
had a Dual Core 3,16 GHz processor, 4 GB RAM and 1 TB harddisk. One of the
servers was exclusively used to distribute the MapReduce jobs (Jobtracker) and
store the metadata of the file system (Namenode). Query 1 to 3 were evaluated
on a fixed cluster size of 9 nodes with varying dataset sizes, whereas Query 4
and 5 used a fixed dataset size of 200 million triples while varying the number
of cluster nodes.

Query 1. Starting from a given track this query determines the album name
for all similar tracks that can be reached by following the edge trackSimilar at
most four times. The overall execution times of this query are shown in the left
diagram of Figure[B and exhibit a linear scaling behavior in the size of the graph.
Furthermore it turns out that this is also the case for the amount of transferred
data (SHUFFLE), intermediate data (LOCAL) and data stored in HDFS. These
values are shown in the right diagram of Figure[ll We conclude that the execution
time is mainly influenced by the number of intermediate results stored locally
as well as the transferred data between the machines.

Query 2. Starting from all tracks of Michael Jackson that are on the album
?Thriller” the query determines all similar tracks that have a minimum duration

RDFPath: Path Query Processing on Large RDF Graphs with MapReduce 59

The Disco Bovs - I Surrender :: trackSimilar(*4) > trackAlbum
6 _ 50 9[—=—SHUFFLE| . o
&5 2 40 4] Q- LOCAL | e
2 4 © 30 {l--x-- HDFS |
E 3 gn 20 A e
2 £10 ——
E 14 : : : S (-0 * .
0 50 100 150 200 0 50 100 150 200
RDF Triples (million) RDF Triples (million)

Fig.5. Query 1

of 50 seconds. The last location step then looks for the top fans of these tracks
who live in Germany. The idea behind this query was to have a look at the
impacts of using filters to reduce the amount of intermediate results. The number
of results to the query and therefore the used HDFS storage do not increase
significantly with the size of the graph as the tracks of the album ” Thriller” are
fixed. This also explains the execution times of the query as illustrated in the left
diagram of Figure [6l and confirms that the execution time is mainly determined
by the amount of intermediate results.

Michael Jackson :: artistTracks [trackAlbum=equals('Michael Jackson -_Thriller’)]
> trackSimilar[trackDuration=min(50000)] > trackTopFans[country=equals(‘DE’)]
3:25 _ 20 7 —=—sHUFFLE -

% o 8 15 | = Qoo LOCAL o sgast i
;E”i 3:15) --%x-- HDFS | e
£ 3.05 e 10— g
) S |
E 2:55 s 51 .o
= 245 1 . . . 1”0
0 50 100 150 200 0 50 100 150 200
RDF Triples (million) RDF Triples (million)

Fig. 6. Query 2

Query 3. These queries determine the friends of Chris reached by following an
increasing number of edges. The first query starts by following the edge knows
once and the last query ends by following the edge knows at most ten times.
This corresponds to the computation of the Friend of a Friend paths starting
from Chris with an increasing maximum distance. The left chart of Figure [7]
illustrates the percentage of reached people, in accordance to the maximum
Friend of a Friend distance, where the total percentage represents all reachable
people. Starting with a fixed person we can reach over 98% of all reachable
persons by following the edge knows seven times which corresponds to the well-
known six degrees of separation paradigm [18]. The right chart of Figure [7] shows
the execution times depending on the maximum Friend of a Friend distance. We

"http://www.foaf-project.org

http://www.foaf-project.org

60 M. Przyjaciel-Zablocki et al.

Chris :: knows (*X) , 1<X<10

-;; 100 7 Triples (million) x

S 80 Py 6 —a— 50 p

2 %5

o g O 100

z 00 los (mill E 47| --x-- 200

E Triples (million) é‘ 3

2 40 —n— 50 e

& w04 LT Oeeeeee 100 g 2

s % - - x=- 200 Bl

X0 s —TTT—T—7T P/
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Path length Path length

Fig. 7. Query 3

can observe a linear scaling behaviour that is mainly determined by the number
of joins rather than computation and data transfer time.

Query 4. & 5. Query 4 is a kind of recommendation query that gives, for
every user, those tracks that are similar to the tracks the user listened to. On
the other hand, Query 5 is an analytical query where we want to know, for
every artist, where the top Fans of a similar artist come from. The execution
times of both queries for a fixed input size of 200 million triples and a variable
number of nodes in the cluster are shown in the left diagram of Figure Bl We
can observe that the overall execution times for Query 4 as well as for Query 5
improve with the number of nodes but the benefit of an additional node decreases
continuously which is an expectable behaviour of the MapReduce framework.
The storage utilization for both queries is given in the right diagram of Figure[§
The values for different numbers of nodes were almost equal in size, with a
maximum deviation of 1% for Shuffle & HDFS storage and 9% for local storage.

(Query 4) * ::
(Query 5) * ::

listenedTo > trackSimilar
artistSimilar > artistTopFans > userCountry

3:30 800
3:00 —=— Query 4 EQuery 4
2:30 600 1| oQuery 5

2:00
1:30
1:00
0:30

400

Time (h:mm)
Storage (GB)

180

200 164

0

Shuffle

HDFS Local

Fig. 8. Query 4 & 5

Results. Our evaluation shows that RDFPath allows to express and compute
interesting graph issues such as Friend of a Friend queries, small world proper-
ties like six degrees of separation or the Erdos numbe on large RDF graphs.

8 http://www.oakland.edu/enp

http://www.oakland.edu/enp

RDFPath: Path Query Processing on Large RDF Graphs with MapReduce 61

The execution times for the surveyed queries on real-world data from Last.fm
scale linear in the size of the graph where the number of joins as well as the
amount of data, that must be stored (local/HDFS) and transferred over the
network, determine the complexity of a query. Taking this into account it is
promising to observe an almost constant storage utilization with an increasing
number of nodes. On the other hand, adding additional nodes can improve the
overall executions time significantly, which shows that RDFPath benefits from
the horizontal scaling properties of MapReduce.

6 Conclusion

The amount of available Semantic Web data is growing constantly, calling for
solutions that are able to scale accordingly. The RDF query language RDFPath,
that is presented in this paper, was designed with this constraint in mind and
combines an intuitive syntax for path queries with an effective execution strategy
using MapReduce. Our evaluation confirms that both large RDF graphs can be
handled while scaling linear with the size of the graph and that RDFPath can be
used to investigate graph properties such as a variant of the famous six degrees
of separation paradigm typically encountered in social graphs.

As future work we plan to extend RDFPath with more powerful language
constructs geared towards the analysis of social graphs, e.g. to express the full
list of desiderata stated in [21]. In parallel, we are optimizing our implementation
on the system level by incorporating current results for the efficient computation
of joins with MapReduce [7I23].

References

1. Abadi, D.J.: Tradeoffs between Parallel Database Systems, Hadoop, and
HadoopDB as Platforms for Petabyte-Scale Analysis. In: Gertz, M., Ludé&scher,
B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 1-3. Springer, Heidelberg (2010)

2. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web
Data Management Using Vertical Partitioning. In: VLDB, pp. 411-422 (2007)

3. Alkhateeb, F., Baget, J.F., Euzenat, J.: Extending sparql with regular expression
patterns (for querying rdf). J. Web Sem. 7(2), 5773 (2009)

4. Angles, R., Gutierrez, C.: Querying RDF Data from a Graph Database Perspective.
In: Gémez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 346-360.
Springer, Heidelberg (2005)

5. Angles, R., Gutierrez, C., Hayes, J.: RDF Query Languages Need Support for
Graph Properties. Tech. Rep. TR/DCC-2004-3, University of Chile (June 2004)

6. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and Semantic Web Query Lan-
guages: A Survey. In: Eisinger, N., Matuszyiiski, J. (eds.) Reasoning Web. LNCS,
vol. 3564, pp. 35—-133. Springer, Heidelberg (2005)

7. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A Compari-
son of Join Algorithms for Log Processing in MapReduce. In: SIGMOD Conference,
pp. 975-986 (2010)

8. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: OSDI, pp. 137-150 (2004)

62

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

M. Przyjaciel-Zablocki et al.

Erling, O., Mikhailov, I.: Towards Web Scale RDF. In: Proc. SSWS (2008)
Furche, T., Linse, B., Bry, F., Plexousakis, D., Gottlob, G.: RDF Querying: Lan-
guage Constructs and Evaluation Methods Compared. In: Barahona, P., Bry, F.,
Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web 2006. LNCS, vol. 4126,
pp. 1-52. Springer, Heidelberg (2006)

Ghemawat, S., Gobioff, H., Leung, S.T.: The Google File System. In: Proc. SOSP,
pp. 29-43 (2003)

Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A Comparison of RDF Query
Languages. In: Mcllraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC
2004. LNCS, vol. 3298, pp. 502-517. Springer, Heidelberg (2004)

Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Working Draft (May
2011), http://www.w3.org/TR/sparqllil-query/

Hung, E., Deng, Y., Subrahmanian, V.S.: RDF Aggregate Queries and Views. In:
ICDE, pp. 717-728 (2005)

Husain, M.F.; Khan, L., Kantarcioglu, M., Thuraisingham, B.: Data Intensive
Query Processing for Large RDF Graphs Using Cloud Computing Tools. In: Proc.
CLOUD, pp. 1-10. IEEE (2010)

Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: A Peta-Scale Graph Mining
System. In: ICDM, pp. 229-238 (2009)

Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: A Declarative Query Language for RDF. In: WWW, pp. 592-603 (2002)
Leskovec, J., Horvitz, E.: Planetary-Scale Views on a Large Instant-Messaging
Network. In: Proc. WWW 2008, pp. 915-924 (2008)

Lin, J., Dyer, C.: Data-intensive text processing with MapReduce. Synthesis Lec-
tures on Human Language Technologies 3(1), 1-177 (2010)

Manola, F., Miller, E.: RDF Primer (2004), http://www.w3.org/TR/rdf-primer/
Martin, M.S., Gutierrez, C.: Representing, Querying and Transforming Social Net-
works with RDF/SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano,
P., Heath, T., Hyvonen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 293-307. Springer, Heidelberg (2009)

Myung, J., Yeon, J., Lee, S.: SPARQL Basic Graph Pattern Processing with Iter-
ative MapReduce. In: Proc. MDAC 2010, pp. 1-6. ACM (2010)

Okcan, A., Riedewald, M.: Processing Theta-Joins using MapReduce. In: SIGMOD
Conference, pp. 949-960 (2011)

Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-
So-Foreign Language for Data Processing. In: SIGMOD, pp. 1099-1110 (2008)
Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for
RDF. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 66-81. Springer,
Heidelberg (2008)

Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM
Trans. Database Syst. 34(3) (2009)

Pratt, T.W., Friedman, D.P.: A Language Extension for Graph Processing and Its
Formal Semantics. Commun. ACM 14(7), 460-467 (1971)

Przyjaciel-Zablocki, M.: RDFPath: Verteilte Analyse von RDF-Graphen. Master’s
thesis, Albert-Ludwigs-Universitat Freiburg (2010)

Schétzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: Mapping SPARQL
to Pig Latin. In: Proceedings of the International Workshop on Semantic Web
Information Management, SWIM 2011, pp. 4:1-4:8. ACM (2011)

http://www.w3.org/TR/sparql11-query/
 http://www.w3.org/TR/rdf-primer/

RDFPath: Path Query Processing on Large RDF Graphs with MapReduce 63

30. Schmidt, M., Hornung, T., Kiichlin, N., Lausen, G., Pinkel, C.: An Experimental
Comparison of RDF Data Management Approaches in a SPARQL Benchmark
Scenario. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 82-97. Springer,
Heidelberg (2008)

31. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Perfor-
mance Benchmark. In: ICDE, pp. 222-233 (2009)

32. Stuckenschmidt, H., Vdovjak, R., Broekstra, J., Houben, G.J.: Towards distributed
processing of RDF path queries. Int. J. Web Eng. Technol. 2(2/3), 207-230 (2005)

33. White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly (2009)

34. Zauner, H., Linse, B., Furche, T., Bry, F.: A RPL Through RDF: Expressive Nav-
igation in RDF Graphs. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS,
vol. 6333, pp. 251-257. Springer, Heidelberg (2010)

A Comparison with SPARQL

SPARQL 1.0 is the W3C recommended query language for RDF. Compared with
RDFPath, we can note the following interesting relations: First of all, it is impor-
tant to mention that SPARQL 1.0 is a general purpose query language, designed
for a wide range of analysis tasks, whereas RDFPath focuses on expressing path
queries. Thus, SPARQL 1.0 provides only limited navigation capabilities (e.g. no
abbreviation for following the same edge). Furthermore, both approaches differ
in the kind of output. The result of a query in RDFPath is a set of paths in
contrast to a set of variable mappings in SPARQL. Next, SPARQL 1.0 does not
support aggregate functions and shortest path expressions, whereas RDFPath
supports both.

The SPARQL 1.1 [I3] working draft addresses, among other things, some of
the issues mentioned above: Property paths, introduced with SPARQL 1.1, add
support for navigational queries similar to RDFPath but with some additional
features like inverse, negated and alternative paths. They also allow to abbre-
viate occurrences of edges in more detail and follow paths of arbitrary length.
However, property paths do not provide access to the whole path, but only to
the first and last node. Accordingly, the result in SPARQL 1.1 is projected to
the variables given in the query, i.e. the first and the last node of a path. In
contrast, RDFPath provides access to the whole path in such a way that it is
possible to express filter conditions on arbitrary location steps and to emit whole
paths with all intermediate steps as output. Furthermore, predicates in property
paths are always fixed, i.e. variable edges are not expressible. RDFPath provides
a possibility to follow arbitrary edges and supports three types of cycle treat-
ment. Expressing a query that determines the shortest path between two nodes
is also not possible with property paths. Certainly, SPARQL 1.1 allows multiple
property path expressions in one query, whereas queries in RDFPath must be
composed of a single sequence of location steps. The following two examples
illustrate how queries could be expressed with SPARQL 1.0, SPARQL 1.1 and
RDFPath, despite of the different kind of output.

64 M. Przyjaciel-Zablocki et al.

Example 1. Friend of a Friend query starting with ’Allen’
SPARQL 1.0 SELECT 7tmpl, 7tmp2, ?7tmp3, ?tmp4, ?tmpb
WHERE { Allen knows 7tmpl . 7tmpl knows 7tmp2 .
?tmp2 knows 7tmp3 . 7tmp3 knows 7tmp4 .
7tmp5 knows 7tmp5 }
SPARQL 1.1 SELECT 7?tmp { Allen knows{5} 7tmp }
RDFPath Allen :: knows(5)
Example 2. Friend of a Friend query with two path restrictions
SPARQL 1.0 SELECT ?7tmpl, ?7tmp2, 7age
& WHERE { Allen knows ?7tmpl . 7tmpl age 7age .
SPARQL 1.1 FILTER (7age >= 20)
7tmpl knows 7tmp2 . 7tmp2 country ’DE’}
RDFPath Allen :: knows[age=min(20)] > knows[country=equals(’DE’)

	RDFPath: Path Query Processing on Large RDF Graphs with MapReduce
	Introduction
	MapReduce
	RDFPath
	RDFPath By Example
	Expressiveness

	Query Evaluation
	Mapping of Location Steps to MapReduce Jobs

	Evaluation
	Conclusion
	Comparison with SPARQL

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

