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Analysis of large RDF Graphs 
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 Facebook (2010)1 

◦ > 500 million active users 

◦ > 900 million interactive objects (sites, groups, events, …) 

◦ Usage: > 700 billion minutes per month 

◦ Can be expressed as RDF Graphs 

 

 How to handle such large RDF Graphs? 
 

 Approach: Distributed analysis of large RDF
   Graphs using MapReduce 
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  Large RDF Graphs 

Source:  
(1) Facebook Press Room (12.10.2010)     

     http://www.facebook.com/press/info.php?statistics 



MapReduce Cluster 
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  Overview 

RDF Graph 

Path Queries 

RDFPath 

Graph Pattern 

SPARQL 

Pig Latin 

PigSPARQL 



Principles & Basic Concepts 
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 Google‘s MapReduce 
◦ Automatic parallelization of computations 
◦ Fix and simple level of abstraction: Map & Reduce 

 

 Distributed File System 

◦ Clusters of commodity hardware 
 Fault tolerance by replication 

◦ Very large files / write-once, read-many-times 

 

 Hadoop 
◦ Open Source implementation (Apache project) 
◦ Used by Yahoo, Facebook, Amazon, IBM, Last.fm, … 
◦ more 
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Path queries on large RDF Graphs 
Martin Przyjaciel-Zablocki 
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 Requirements 
◦ Navigational queries over RDF Graphs 

◦ Extendibility  

◦ Particularly with regard to a MapReduce evaluation 

 

 Idea 
◦ Declarative path specification with XPath like location steps 

◦ Every location step can be mapped to one MapReduce job 
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  Path Language 



 Peter :: knows[country=equals(DE)] > age. 

 

 Results 
◦ Peter (knows) Frank [country=DE] (age) 17 

◦ Peter (knows) Klaus [country=CH] 

◦ Peter (knows) Simon [country=CH] 
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  Example Queries 

knows 

country 

age 

Frank 
DE 

Simon Peter 

Klaus 

CH 

Chris 

42 

60 
17 

25 



 Peter :: knows(*3). 

 

 Results 
◦ Peter (knows) Frank 

◦ Peter (knows) Frank (knows) Chris 

◦ Peter (knows) Klaus 

◦ Peter (knows) Simon 
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  Example Queries 

knows 

country 

age 

Frank 
DE 

Simon Peter 

Klaus 

CH 

Chris 

42 

60 
17 

25 more 



 Starting nodes  

◦ fixed or arbitrary 

 Location step follows edge 

 Filters & sub queries 

 Shortest path queries 

 Avoidance of cycles 

 Different types of result  

◦ paths, nodes, aggregations,… 

  

 

Handling Large RDF Graphs with MapReduce 12 
3. RDFPath 

  Path Language 



 RDFPath-Store 
◦ Build on the top of HDFS + local storage 

◦ Vertical partitioning related to predicates (edges) 

◦ Optional Dictionary Encoding 

 

 Query-Engine 

           Peter :: knows(*2)   >   knows. 
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  Further components 

Peter (knows) Frank (knows) Chris 
Peter (knows) Simon 
Peter (knows) Klaus 

… 

previous paths 

Chris  Peter 
Johan  Frank 
Frank  Chris 

… 

knows 

Jo
in

 

rsj 

system 



 Hadoop cluster with 10 servers 

 Real Last.fm & generated SP2Bench datasets 

 

 Results 

◦ Promising scaling behavior 

◦ Evaluated up to 1.6 billion triples  

◦ Considered problems: 

Shortest path, Erdoes-number, Six-degrees of sep., … 

◦ Dictionary Encoding reduces data but with significant 

Dictionary lookup costs 
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  Evaluation 



Translating SPARQL to Pig Latin 
Alexander Schätzle 
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 Advantages of MapReduce 

◦ Parallelization done by the system 

◦ Good fault tolerance & scalability 

 

 Drawbacks of MapReduce 
◦ „Low-Level“ to implement & hard to maintain 

◦ No primitives like JOIN or GROUP 
 

 Pig Latin 
◦ „High-Level“ language for data analysis with Hadoop 

◦ Link between user & MapReduce 

◦ Automatic translation into MapReduce jobs 

◦ more 
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 1. Step 

◦ Convert SPARQL Query into SPARQL Algebra-Tree 
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SELECT * 

WHERE { 

  ?person foaf:name ?name. 

  ?person foaf:age ?age. 

  FILTER (?age >= 18) 

  OPTIONAL { 

    ?person foaf:mbox ?mbox 

  } 

} 

BGP

?person name ?name . 

?person age ?age

BGP

?person mbox ?mbox

LeftJoin

Filter

?age >= 18



 2. Step 

◦ Translate Algebra-Tree into Pig Latin Program 
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indata = LOAD 'pathToFile' USING myLoad() AS (s,p,o); 

 

f1 = FILTER indata BY p=='foaf:name'; 

t1 = FOREACH f1 GENERATE s AS person, o AS name; 

f2 = FILTER indata BY p=='foaf:age'; 

t2 = FOREACH f2 GENERATE s AS person, o AS age; 

j1 = JOIN t1 BY person, t2 BY person; 

BGP1 = FOREACH j1 GENERATE t1::person AS person, 

       t1::name AS name, t2::age AS age; 

BGP

?person name ?name . 

?person age ?age

BGP

?person mbox ?mbox

LeftJoin

Filter

?age >= 18



 2. Step 

◦ Translate Algebra-Tree into Pig Latin Program 
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indata = LOAD 'pathToFile' USING myLoad() AS (s,p,o); 

 

f1 = FILTER indata BY p=='foaf:name'; 

t1 = FOREACH f1 GENERATE s AS person, o AS name; 

f2 = FILTER indata BY p=='foaf:age'; 

t2 = FOREACH f2 GENERATE s AS person, o AS age; 

j1 = JOIN t1 BY person, t2 BY person; 

BGP1 = FOREACH j1 GENERATE t1::person AS person, 

       t1::name AS name, t2::age AS age; 

 

F1 = FILTER BGP1 BY age >= 18;  

BGP

?person name ?name . 

?person age ?age

BGP

?person mbox ?mbox

LeftJoin

Filter

?age >= 18



 2. Step 

◦ Translate Algebra-Tree into Pig Latin Program 
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indata = LOAD 'pathToFile' USING myLoad() AS (s,p,o); 

 

f1 = FILTER indata BY p=='foaf:name'; 

t1 = FOREACH f1 GENERATE s AS person, o AS name; 

f2 = FILTER indata BY p=='foaf:age'; 

t2 = FOREACH f2 GENERATE s AS person, o AS age; 

j1 = JOIN t1 BY person, t2 BY person; 

BGP1 = FOREACH j1 GENERATE t1::person AS person, 

       t1::name AS name, t2::age AS age; 

 

F1 = FILTER BGP1 BY age >= 18; 

 

f1 = FILTER indata BY p=='foaf:mbox'; 

BGP2 = FOREACH indata GENERATE s AS person, o AS mbox; 

BGP

?person name ?name . 

?person age ?age

BGP

?person mbox ?mbox

LeftJoin

Filter

?age >= 18



 2. Step 

◦ Translate Algebra-Tree into Pig Latin Program 
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indata = LOAD 'pathToInput' USING myLoad() AS (s,p,o); 

 

f1 = FILTER indata BY p=='foaf:name'; 

t1 = FOREACH f1 GENERATE s AS person, o AS name; 

f2 = FILTER indata BY p=='foaf:age'; 

t2 = FOREACH f2 GENERATE s AS person, o AS age; 

j1 = JOIN t1 BY person, t2 BY person; 

BGP1 = FOREACH j1 GENERATE t1::person AS person, 

       t1::name AS name, t2::age AS age; 

 

F1 = FILTER BGP1 BY age >= 18; 

 

f1 = FILTER indata BY p=='foaf:mbox'; 

BGP2 = FOREACH indata GENERATE s AS person, o AS mbox; 

 

lj = JOIN F1 BY person LEFT OUTER, BGP2 BY person; 

LJ1 = FOREACH lj GENERATE F1::person AS person, 

      F1::name AS name, F1::age AS age, 

      BGP2::mbox AS mbox; 

 

STORE LJ1 INTO 'pathToOutput' USING myStore(); 

BGP

?person name ?name . 

?person age ?age

BGP

?person mbox ?mbox

LeftJoin

Filter

?age >= 18



Three Levels of Optimization: 
 

 SPARQL Algebra 

◦ Filter Optimizations (Pushing, Splitting, Substitution) 

◦ Triple-Pattern Reordering by Selectivity 

 

 Algebra Translation 
◦ Delete unnecessary Data as early as possible 

◦ Multi-Joins to reduce the Number of Joins 
 

 Data Representation 
◦ Vertical Partitioning of the RDF-Data by Predicate 
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HDFS Bytes

Read

HDFS Bytes

Written

Reduce Shuffle

Bytes

in GB (1600M RDF-Triples) 

Q2

Q2 MJ

Q2 MJ+VP

SELECT ?inproc ?author ?booktitle ?title  

       ?proc ?ee ?page ?url ?yr ?abstract 

WHERE { 

  ?inproc rdf:type bench:Inproceedings . 

  ?inproc dc:creator ?author . 

  ?inproc bench:booktitle ?booktitle . 

  ?inproc dc:title ?title . 

  ?inproc dcterms:partOf ?proc . 

  ?inproc rdfs:seeAlso ?ee . 

  ?inproc swrc:pages ?page . 

  ?inproc foaf:homepage ?url . 

  ?inproc dcterms:issued ?yr  

  OPTIONAL { 

    ?inproc bench:abstract ?abstract 

  } 

} 

ORDER BY ?yr 

 Native Translation needs 8 Joins + 1 Outer Join 
 

 Multi-Join reduces the number of Joins 
 

 Vertical Partitioning reduces the Input-Data  



Handling Large RDF Graphs with 
RDFPath & PigSPARQL on 
MapReduce 
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 RDFPath is especially suited for the execution of path 
queries on large RDF Graphs with MapReduce 

 

 PigSPARQL allows the efficient execution of SPARQL 
queries with MapReduce 

 

 Handling up to 1.6 Billion RDF Triples 

 

 Both approaches show a promising scaling behavior 

 

 I/O is the dominating bottleneck 
 Optimization means reducing the I/O 
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MapReduce 

Pig Latin – Data Model 

Pig Latin – Operators 

RDFPath – Last.fm Example 

Reduce-Side-Join 

RDFPath System Overview 
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Backup Slides 

   



 Steps of a MapReduce execution 
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Split 1 

Split 0 

Split 2 

Split 3 

Split 4 

Split 5 

Map 

Map 

Map 

  
  

  
  

  
  

  
  
  

  
  
  

Reduce 

Reduce 

Out 0 

Out 1 

Input 

(HDFS) 

Intermediate Results 

(Local) 

Output 

 (HDFS) 

Map-Phase Shuffle-Phase Reduce-Phase 



 Signature of a Map-Function 
◦ map(in_key, in_value) -> (out_key, intermediate_value) list 

 

 Signature of a Reduce-Function 
◦ reduce(out_key, intermediate_value list) -> out_value list 

 

 back 
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  Flexible, nested Data Model 
 
  4 Datatypes: 

'Bob' 

('John', 'Doe') 

('Bob' , 'Sarah') 
('Peter', ('likes', 'football')) 

'knows' -> {('Sarah')} 
'age' -> 24 

  Tupelwise Loading of Data with "User Defined Function" 
 
  every Field of a Tuple can have a Name and a Datantype 

Atom: 

Tuple: 

Bag: 

Map: 
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FOREACH: Apply Processing on every Tuple 

Ex:  result = FOREACH input GENERATE field1*field2 AS mul ; 

field1 field2 

2 3 

4 7 

mul 

6 

28 

input result 

FILTER: Delete unwanted Tuples 

Ex:  adults = FILTER  persons  BY  age >= 18 ; 

name age 

Bob 21 

Sarah 17 

persons 
adults 

name age 

Bob 21 
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field1 

a 

b 

left 

[OUTER] JOIN: Combine two or more Relations 

Ex: result = JOIN left BY field1 [LEFT OUTER], right BY field2 ; 

field1 field2 

4 a 

7 a 

right 

left:: 
field1 

right:: 
field1 

right:: 
field2 

a 4 a 

a 7 a 

result 

field1 

a 

b 

left 

field1 field2 

4 a 

7 a 

right 

left:: 
field1 

right:: 
field1 

right:: 
field2 

a 4 a 

a 7 a 

b 

result 

Outer 
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field1 field2 

a 1 

rel1 

UNION: Ex: result   =   UNION  rel1, rel2 ; 

field1 field2 

a 1 

b 3 

result 

field1 field2 

b 3 

rel2 

U 

field1 field2 

3 a 

1 b 

input 

ORDER: Ex: result   =   ORDER  input  BY  field1 ; 

field1 field2 

1 b 

3 a 

result 

back 



 Michael_Jackson :: artistTracks  

     [trackAlbum = equals(Michael_Jackson_-_Thriller)]  

       > trackSimilar [trackDuration = min(50000)]  

       > trackTopFans [userCountry = equals(DE)]. 

 

 Results 
◦ Michael_Jackson (artistTracks)  
Michael_Jackson_-_Beat_It (trackSimilar)  
Michael_Jackson_-_Billie_Jean (trackTopFans) Mark 
 

◦ Michael_Jackson (artistTracks)  
Michael_Jackson_-_Someone_in_the_Dark (trackSimilar) 
Rihanna_-_Russian_Roulette (trackTopFans) Megan 
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  Example Queries 

back 



 

 Example:   * :: knows(*2)   >   knows. 
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  Reduce-Side-Join 

Peter (knows) Frank (knows) Chris 
Peter (knows) Simon (knows) Johan 
Klaus (knows) Simon (knows) Johan 
Frank (knows) Chris 
Peter (knows) Klaus 

… 

previous paths 

Chris  Peter 
Johan  Frank 
Johan  Lukas 
Frank  Chris 

… 

knows R
e
d
u
c
e
-
S
id

e
 Jo

in
 



     Mapper Input      Mapper Output 
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  Reduce-Side-Join 

Peter (knows) Frank (knows) Chris 
Peter (knows) Simon (knows) Johan 
Klaus (knows) Simon (knows) Johan 
Frank (knows) Chris 
Peter (knows) Klaus 

… 

previous paths 

Chris  Peter 
Johan  Frank 
Johan  Lukas 
Frank  Chris 

… 

knows 

(Chris, 1)   Peter (knows) Frank (knows) Chris 
(Johan, 1)   Peter (knows) Simon (knows) Johan 
(Johan, 1)   Klaus (knows) Simon (knows) Johan 
(Chris, 1)   Frank (knows) Chris 
(Klaus, 1)   Peter (knows) Klaus 

… 
 

 
 
 
(Chris, 0)    Peter 
(Johan, 0)   Frank 
(Johan, 0)   Lukas 
(Frank, 0)   Chris 
         … 

  Key Value 

… 

… 



 Reducer‘s strategy (sorting phase): 
(1) Partition according to the first keypair %  #reducer 
(2) Sort within a partiton according the whole keypair 

 

 Consequences 

◦ A Reducer gets all „values“ with the same first keypair 

◦ The „values“ within a partiton contains at first all new 
nodes and thereafter all previous paths 
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  Reduce-Side-Join 



      Reducer Input         Reducer Output  
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  Reduce-Side-Join 

Johan   
Frank 
Lukas 
Peter (knows) Simon (knows) Johan 
Klaus (knows) Simon (knows) Johan 

… 
 

Chris   
Peter 
Manu 
Peter (knows) Frank (knows) Chris 
Frank (knows) Chris 

… 
 

Peter (knows) Frank (knows) Chris (knows) Peter 
Peter (knows) Frank (knows) Chris (knows) Manu 
Frank (knows) Chris (knows) Peter 
Frank (knows) Chris (knows) Manu 

… 
 
Peter (knows) Simon (knows) Johan (knows) Frank 
Peter (knows) Simon (knows) Johan (knows) Lukas 
Klaus (knows) Simon (knows) Johan (knows) Frank 
Klaus (knows) Simon (knows) Johan (knows) Lukas 
 

back 



Evaluation 

MapReduce-Framework HDFS RDFPath-Store 

Query Engine 

Intermediate Language Sequence of MapReduce Jobs 

RDFPath Query 
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  System 

back 


