
Semantic Rhine

Martin Przyjaciel-Zablocki
Alexander Schätzle

University of Freiburg
Databases & Information Systems Group

15. October 2010

1. Motivation

2. MapReduce

3. RDFPath

4. PigSPARQL

5. Summary

Handling Large RDF Graphs with MapReduce 2
0. Overview

Analysis of large RDF Graphs

Handling Large RDF Graphs with MapReduce 3
1. Motivation

 Facebook (2010)1

◦ > 500 million active users

◦ > 900 million interactive objects (sites, groups, events, …)

◦ Usage: > 700 billion minutes per month

◦ Can be expressed as RDF Graphs

 How to handle such large RDF Graphs?

 Approach: Distributed analysis of large RDF
 Graphs using MapReduce

Handling Large RDF Graphs with MapReduce 4
1. Motivation

 Large RDF Graphs

Source:
(1) Facebook Press Room (12.10.2010)

 http://www.facebook.com/press/info.php?statistics

MapReduce Cluster

Handling Large RDF Graphs with MapReduce 5
1. Motivation

 Overview

RDF Graph

Path Queries

RDFPath

Graph Pattern

SPARQL

Pig Latin

PigSPARQL

Principles & Basic Concepts

Handling Large RDF Graphs with MapReduce 6
4. PigSPARQL

 Google‘s MapReduce
◦ Automatic parallelization of computations
◦ Fix and simple level of abstraction: Map & Reduce

 Distributed File System

◦ Clusters of commodity hardware
 Fault tolerance by replication

◦ Very large files / write-once, read-many-times

 Hadoop
◦ Open Source implementation (Apache project)
◦ Used by Yahoo, Facebook, Amazon, IBM, Last.fm, …
◦ more

Handling Large RDF Graphs with MapReduce 7
2. MapReduce

Path queries on large RDF Graphs
Martin Przyjaciel-Zablocki

Handling Large RDF Graphs with MapReduce 8
3. RDFPath

 Requirements
◦ Navigational queries over RDF Graphs

◦ Extendibility

◦ Particularly with regard to a MapReduce evaluation

 Idea
◦ Declarative path specification with XPath like location steps

◦ Every location step can be mapped to one MapReduce job

Handling Large RDF Graphs with MapReduce 9
3. RDFPath

 Path Language

 Peter :: knows[country=equals(DE)] > age.

 Results
◦ Peter (knows) Frank [country=DE] (age) 17

◦ Peter (knows) Klaus [country=CH]

◦ Peter (knows) Simon [country=CH]

Handling Large RDF Graphs with MapReduce 10
3. RDFPath

 Example Queries

knows

country

age

Frank
DE

Simon Peter

Klaus

CH

Chris

42

60
17

25

 Peter :: knows(*3).

 Results
◦ Peter (knows) Frank

◦ Peter (knows) Frank (knows) Chris

◦ Peter (knows) Klaus

◦ Peter (knows) Simon

Handling Large RDF Graphs with MapReduce 11
3. RDFPath

 Example Queries

knows

country

age

Frank
DE

Simon Peter

Klaus

CH

Chris

42

60
17

25 more

 Starting nodes

◦ fixed or arbitrary

 Location step follows edge

 Filters & sub queries

 Shortest path queries

 Avoidance of cycles

 Different types of result

◦ paths, nodes, aggregations,…

Handling Large RDF Graphs with MapReduce 12
3. RDFPath

 Path Language

 RDFPath-Store
◦ Build on the top of HDFS + local storage

◦ Vertical partitioning related to predicates (edges)

◦ Optional Dictionary Encoding

 Query-Engine

 Peter :: knows(*2) > knows.

Handling Large RDF Graphs with MapReduce 13
3. RDFPath

 Further components

Peter (knows) Frank (knows) Chris
Peter (knows) Simon
Peter (knows) Klaus

…

previous paths

Chris Peter
Johan Frank
Frank Chris

…

knows

Jo
in

rsj

system

 Hadoop cluster with 10 servers

 Real Last.fm & generated SP2Bench datasets

 Results

◦ Promising scaling behavior

◦ Evaluated up to 1.6 billion triples

◦ Considered problems:

Shortest path, Erdoes-number, Six-degrees of sep., …

◦ Dictionary Encoding reduces data but with significant

Dictionary lookup costs

Handling Large RDF Graphs with MapReduce 14

3. RDFPath

 Evaluation

Translating SPARQL to Pig Latin
Alexander Schätzle

Handling Large RDF Graphs with MapReduce 15
4. PigSPARQL

 Advantages of MapReduce

◦ Parallelization done by the system

◦ Good fault tolerance & scalability

 Drawbacks of MapReduce
◦ „Low-Level“ to implement & hard to maintain

◦ No primitives like JOIN or GROUP

 Pig Latin
◦ „High-Level“ language for data analysis with Hadoop

◦ Link between user & MapReduce

◦ Automatic translation into MapReduce jobs

◦ more

Handling Large RDF Graphs with MapReduce 16
4. PigSPARQL

 1. Step

◦ Convert SPARQL Query into SPARQL Algebra-Tree

Handling Large RDF Graphs with MapReduce 17
4. PigSPARQL

SELECT *

WHERE {

 ?person foaf:name ?name.

 ?person foaf:age ?age.

 FILTER (?age >= 18)

 OPTIONAL {

 ?person foaf:mbox ?mbox

 }

}

BGP

?person name ?name .

?person age ?age

BGP

?person mbox ?mbox

LeftJoin

Filter

?age >= 18

 2. Step

◦ Translate Algebra-Tree into Pig Latin Program

Handling Large RDF Graphs with MapReduce 18
4. PigSPARQL

indata = LOAD 'pathToFile' USING myLoad() AS (s,p,o);

f1 = FILTER indata BY p=='foaf:name';

t1 = FOREACH f1 GENERATE s AS person, o AS name;

f2 = FILTER indata BY p=='foaf:age';

t2 = FOREACH f2 GENERATE s AS person, o AS age;

j1 = JOIN t1 BY person, t2 BY person;

BGP1 = FOREACH j1 GENERATE t1::person AS person,

 t1::name AS name, t2::age AS age;

BGP

?person name ?name .

?person age ?age

BGP

?person mbox ?mbox

LeftJoin

Filter

?age >= 18

 2. Step

◦ Translate Algebra-Tree into Pig Latin Program

Handling Large RDF Graphs with MapReduce 19
4. PigSPARQL

indata = LOAD 'pathToFile' USING myLoad() AS (s,p,o);

f1 = FILTER indata BY p=='foaf:name';

t1 = FOREACH f1 GENERATE s AS person, o AS name;

f2 = FILTER indata BY p=='foaf:age';

t2 = FOREACH f2 GENERATE s AS person, o AS age;

j1 = JOIN t1 BY person, t2 BY person;

BGP1 = FOREACH j1 GENERATE t1::person AS person,

 t1::name AS name, t2::age AS age;

F1 = FILTER BGP1 BY age >= 18;

BGP

?person name ?name .

?person age ?age

BGP

?person mbox ?mbox

LeftJoin

Filter

?age >= 18

 2. Step

◦ Translate Algebra-Tree into Pig Latin Program

Handling Large RDF Graphs with MapReduce 20
4. PigSPARQL

indata = LOAD 'pathToFile' USING myLoad() AS (s,p,o);

f1 = FILTER indata BY p=='foaf:name';

t1 = FOREACH f1 GENERATE s AS person, o AS name;

f2 = FILTER indata BY p=='foaf:age';

t2 = FOREACH f2 GENERATE s AS person, o AS age;

j1 = JOIN t1 BY person, t2 BY person;

BGP1 = FOREACH j1 GENERATE t1::person AS person,

 t1::name AS name, t2::age AS age;

F1 = FILTER BGP1 BY age >= 18;

f1 = FILTER indata BY p=='foaf:mbox';

BGP2 = FOREACH indata GENERATE s AS person, o AS mbox;

BGP

?person name ?name .

?person age ?age

BGP

?person mbox ?mbox

LeftJoin

Filter

?age >= 18

 2. Step

◦ Translate Algebra-Tree into Pig Latin Program

Handling Large RDF Graphs with MapReduce 21
4. PigSPARQL

indata = LOAD 'pathToInput' USING myLoad() AS (s,p,o);

f1 = FILTER indata BY p=='foaf:name';

t1 = FOREACH f1 GENERATE s AS person, o AS name;

f2 = FILTER indata BY p=='foaf:age';

t2 = FOREACH f2 GENERATE s AS person, o AS age;

j1 = JOIN t1 BY person, t2 BY person;

BGP1 = FOREACH j1 GENERATE t1::person AS person,

 t1::name AS name, t2::age AS age;

F1 = FILTER BGP1 BY age >= 18;

f1 = FILTER indata BY p=='foaf:mbox';

BGP2 = FOREACH indata GENERATE s AS person, o AS mbox;

lj = JOIN F1 BY person LEFT OUTER, BGP2 BY person;

LJ1 = FOREACH lj GENERATE F1::person AS person,

 F1::name AS name, F1::age AS age,

 BGP2::mbox AS mbox;

STORE LJ1 INTO 'pathToOutput' USING myStore();

BGP

?person name ?name .

?person age ?age

BGP

?person mbox ?mbox

LeftJoin

Filter

?age >= 18

Three Levels of Optimization:

 SPARQL Algebra

◦ Filter Optimizations (Pushing, Splitting, Substitution)

◦ Triple-Pattern Reordering by Selectivity

 Algebra Translation
◦ Delete unnecessary Data as early as possible

◦ Multi-Joins to reduce the Number of Joins

 Data Representation
◦ Vertical Partitioning of the RDF-Data by Predicate

Handling Large RDF Graphs with MapReduce 22
4. PigSPARQL

Handling Large RDF Graphs with MapReduce 23
4. PigSPARQL

00:00:00

02:00:00

04:00:00

06:00:00

08:00:00

10:00:00

12:00:00

14:00:00

16:00:00

18:00:00

0 200 400 600 800 1000 1200 1400 1600

T
im

e
 (

h
h
:m

m
:s

s
)

RDF-Triples (in Millions)

Q2 Q2 MJ Q2 MJ+VP

3
1
7
1
,2

8

1
3
4
5
,4

5

1
2
4
4
,0

9

2
2
1
4
,1

7

3
8
8
,3

5

2
7
2
,4

6

1
6
8
,2

7

1
2
5
,7

0

1
7
8
,2

0

HDFS Bytes

Read

HDFS Bytes

Written

Reduce Shuffle

Bytes

in GB (1600M RDF-Triples)

Q2

Q2 MJ

Q2 MJ+VP

SELECT ?inproc ?author ?booktitle ?title

 ?proc ?ee ?page ?url ?yr ?abstract

WHERE {

 ?inproc rdf:type bench:Inproceedings .

 ?inproc dc:creator ?author .

 ?inproc bench:booktitle ?booktitle .

 ?inproc dc:title ?title .

 ?inproc dcterms:partOf ?proc .

 ?inproc rdfs:seeAlso ?ee .

 ?inproc swrc:pages ?page .

 ?inproc foaf:homepage ?url .

 ?inproc dcterms:issued ?yr

 OPTIONAL {

 ?inproc bench:abstract ?abstract

 }

}

ORDER BY ?yr

 Native Translation needs 8 Joins + 1 Outer Join

 Multi-Join reduces the number of Joins

 Vertical Partitioning reduces the Input-Data

Handling Large RDF Graphs with
RDFPath & PigSPARQL on
MapReduce

Handling Large RDF Graphs with MapReduce 24
4. PigSPARQL

 RDFPath is especially suited for the execution of path
queries on large RDF Graphs with MapReduce

 PigSPARQL allows the efficient execution of SPARQL
queries with MapReduce

 Handling up to 1.6 Billion RDF Triples

 Both approaches show a promising scaling behavior

 I/O is the dominating bottleneck
 Optimization means reducing the I/O

Handling Large RDF Graphs with MapReduce 25
5. Summary

Handling Large RDF Graphs with MapReduce 26
Thanks

MapReduce

Pig Latin – Data Model

Pig Latin – Operators

RDFPath – Last.fm Example

Reduce-Side-Join

RDFPath System Overview

Handling Large RDF Graphs with MapReduce 27

Backup Slides

 Steps of a MapReduce execution

Handling Large RDF Graphs with MapReduce 28
2. MapReduce

Split 1

Split 0

Split 2

Split 3

Split 4

Split 5

Map

Map

Map

Reduce

Reduce

Out 0

Out 1

Input

(HDFS)

Intermediate Results

(Local)

Output

 (HDFS)

Map-Phase Shuffle-Phase Reduce-Phase

 Signature of a Map-Function
◦ map(in_key, in_value) -> (out_key, intermediate_value) list

 Signature of a Reduce-Function
◦ reduce(out_key, intermediate_value list) -> out_value list

 back

Handling Large RDF Graphs with MapReduce 29
2. MapReduce

Handling Large RDF Graphs with MapReduce 30
4. PigSPARQL

 Flexible, nested Data Model

 4 Datatypes:

'Bob'

('John', 'Doe')

('Bob' , 'Sarah')
('Peter', ('likes', 'football'))

'knows' -> {('Sarah')}
'age' -> 24

 Tupelwise Loading of Data with "User Defined Function"

 every Field of a Tuple can have a Name and a Datantype

Atom:

Tuple:

Bag:

Map:

Handling Large RDF Graphs with MapReduce 31
4. PigSPARQL

FOREACH: Apply Processing on every Tuple

Ex: result = FOREACH input GENERATE field1*field2 AS mul ;

field1 field2

2 3

4 7

mul

6

28

input result

FILTER: Delete unwanted Tuples

Ex: adults = FILTER persons BY age >= 18 ;

name age

Bob 21

Sarah 17

persons
adults

name age

Bob 21

Handling Large RDF Graphs with MapReduce 32
4. PigSPARQL

field1

a

b

left

[OUTER] JOIN: Combine two or more Relations

Ex: result = JOIN left BY field1 [LEFT OUTER], right BY field2 ;

field1 field2

4 a

7 a

right

left::
field1

right::
field1

right::
field2

a 4 a

a 7 a

result

field1

a

b

left

field1 field2

4 a

7 a

right

left::
field1

right::
field1

right::
field2

a 4 a

a 7 a

b

result

Outer

Handling Large RDF Graphs with MapReduce 33
4. PigSPARQL

field1 field2

a 1

rel1

UNION: Ex: result = UNION rel1, rel2 ;

field1 field2

a 1

b 3

result

field1 field2

b 3

rel2

U

field1 field2

3 a

1 b

input

ORDER: Ex: result = ORDER input BY field1 ;

field1 field2

1 b

3 a

result

back

 Michael_Jackson :: artistTracks

 [trackAlbum = equals(Michael_Jackson_-_Thriller)]

 > trackSimilar [trackDuration = min(50000)]

 > trackTopFans [userCountry = equals(DE)].

 Results
◦ Michael_Jackson (artistTracks)
Michael_Jackson_-_Beat_It (trackSimilar)
Michael_Jackson_-_Billie_Jean (trackTopFans) Mark

◦ Michael_Jackson (artistTracks)
Michael_Jackson_-_Someone_in_the_Dark (trackSimilar)
Rihanna_-_Russian_Roulette (trackTopFans) Megan

Handling Large RDF Graphs with MapReduce 34
3. RDFPath

 Example Queries

back

 Example: * :: knows(*2) > knows.

Handling Large RDF Graphs with MapReduce 35
3. RDFPath

 Reduce-Side-Join

Peter (knows) Frank (knows) Chris
Peter (knows) Simon (knows) Johan
Klaus (knows) Simon (knows) Johan
Frank (knows) Chris
Peter (knows) Klaus

…

previous paths

Chris Peter
Johan Frank
Johan Lukas
Frank Chris

…

knows R
e
d
u
c
e
-
S
id

e
 Jo

in

 Mapper Input Mapper Output

Handling Large RDF Graphs with MapReduce 36
3. RDFPath

 Reduce-Side-Join

Peter (knows) Frank (knows) Chris
Peter (knows) Simon (knows) Johan
Klaus (knows) Simon (knows) Johan
Frank (knows) Chris
Peter (knows) Klaus

…

previous paths

Chris Peter
Johan Frank
Johan Lukas
Frank Chris

…

knows

(Chris, 1) Peter (knows) Frank (knows) Chris
(Johan, 1) Peter (knows) Simon (knows) Johan
(Johan, 1) Klaus (knows) Simon (knows) Johan
(Chris, 1) Frank (knows) Chris
(Klaus, 1) Peter (knows) Klaus

…

(Chris, 0) Peter
(Johan, 0) Frank
(Johan, 0) Lukas
(Frank, 0) Chris
 …

 Key Value

…

…

 Reducer‘s strategy (sorting phase):
(1) Partition according to the first keypair % #reducer
(2) Sort within a partiton according the whole keypair

 Consequences

◦ A Reducer gets all „values“ with the same first keypair

◦ The „values“ within a partiton contains at first all new
nodes and thereafter all previous paths

Handling Large RDF Graphs with MapReduce 37
3. RDFPath

 Reduce-Side-Join

 Reducer Input Reducer Output

Handling Large RDF Graphs with MapReduce 38
3. RDFPath

 Reduce-Side-Join

Johan
Frank
Lukas
Peter (knows) Simon (knows) Johan
Klaus (knows) Simon (knows) Johan

…

Chris
Peter
Manu
Peter (knows) Frank (knows) Chris
Frank (knows) Chris

…

Peter (knows) Frank (knows) Chris (knows) Peter
Peter (knows) Frank (knows) Chris (knows) Manu
Frank (knows) Chris (knows) Peter
Frank (knows) Chris (knows) Manu

…

Peter (knows) Simon (knows) Johan (knows) Frank
Peter (knows) Simon (knows) Johan (knows) Lukas
Klaus (knows) Simon (knows) Johan (knows) Frank
Klaus (knows) Simon (knows) Johan (knows) Lukas

back

Evaluation

MapReduce-Framework HDFS RDFPath-Store

Query Engine

Intermediate Language Sequence of MapReduce Jobs

RDFPath Query

Handling Large RDF Graphs with MapReduce 39
3. RDFPath

 System

back

