
Optique: Towards OBDA Systems for Industry

Evgeny Kharlamov1, Ernesto Jiménez-Ruiz1, Dmitriy Zheleznyakov1, Dimitris
Bilidas6, Martin Giese2, Peter Haase5, Ian Horrocks1, Herald Kllapi6, Manolis
Koubarakis6, Özgür Özçep4, Mariano Rodríguez-Muro3, Riccardo Rosati7,
Michael Schmidt5, Rudolf Schlatte2, Ahmet Soylu2, and Arild Waaler2

1 University of Oxford, UK fname.lname@cs.ox.ac.uk
2 University of Oslo, Norway {martingi, rudi, ahmets, arild}@ifi.uio.no

3 Free University of Bozen-Bolzano, Italy rodriguez@inf.unibz.it
4 Hamburg University of Technology, Germany oezguer.oezcep@tu-harburg.de

5 fluid Operations AG, Walldorf, Germany fname.lame@fluidops.com
6 University of Athens, Greece {d.bilidas, herald, koubarak}@di.uoa.gr

7 Sapienza Università di Roma, Italy lname@dis.uniroma1.it

Abstract. The recently started EU FP7-funded project Optique will
develop an end-to-end OBDA system providing scalable end-user access
to industrial Big Data stores. This paper presents an initial architectural
specification for the Optique system along with the individual system
components.

Keywords: OBDA, ontologies, OWL 2, Big Data, System Architecture

1 Introduction

A typical problem that end-users face when dealing with Big Data is that of
data access, which arises due to the three dimensions of Big Data: volume, since
massive amounts of data have been accumulated over the decades, velocity, since
the amounts may be rapidly increasing, and variety, since the data are spread
over different formats. In this context accessing the relevant information is an
increasingly difficult task. The Optique project8 [1] on ‘Scalable End-user Access
to Big Data’ advocates a next generation of the well known Ontology-Based Data
Access (OBDA) approach to address the Big Data dimensions and in particular
the data access problem.

The project is focused around two demanding use cases that provide it with
motivation, guidance, and realistic evaluation settings. The first use case is
provided by Siemens (http://www.siemens.com) and encompasses several ter-
abytes of temporal data coming from sensors, with a growth rate of about 30
gigabytes per day. Users need to query this data in combination with many
gigabytes of other relational data that describe events. The second use case is
provided by Statoil (http://www.statoil.com) and concerns more than one
petabyte of geological data. The data are stored in multiple databases which
have different schemata, and—for the time being—the users have to manually
combine information from many databases, including temporal, in order to get
the results for a single query.
8 http://www.optique-project.eu/

http://www.siemens.com
http://www.statoil.com
http://www.optique-project.eu/


streaming data

end-user IT-expert

Ontology Mappings

...
heterogeneous 
data sources 

query

results 

Query 
Formulation

Ontology & Mapping 
Management

...

end-user IT-expert

Application
Ontology Mappings

Query Answering

...
heterogeneous 
data sources 

query

results 

Classical OBDA Optique OBDA

Application
(Analytics)

Query Transformation
Distributed Query Optimisation and Processing

Fig. 1. Left: classical OBDA approach. Right: the Optique OBDA system

Accessing the relevant data in this context is becoming increasingly difficult
for end-users. E.g., in large enterprises, such as Statoil, end-users work with ap-
plications that allow accessing data through a limited set of predefined queries.
If an end-user needs data that these predefined queries do not provide, then the
help of IT-experts (e.g., database managers) is required to translate the informa-
tion need of end-users to specialised queries and optimise them for efficient exe-
cution. This process is the main bottleneck in the Optique use cases since it may
require several iterations and may take several days. In particular in the oil and
gas industry, IT-experts spend 30–70% of their time gathering and assessing the
quality of data [2]. This is clearly very expensive in terms of both time and money.

The Optique has the potential of reducing the cost of data access dramat-
ically, by automating the process of going from an information requirement to
the retrieval of the relevant data, and to reduce the time needed for this process
from days to hours, or even to minutes. A bigger goal of the project is to provide
a platform with a generic architecture that can be adapted to any domain that
requires scalable data access and efficient query execution.

The key to this automated translation is the “Ontology-Based Data Access”
(OBDA) [3,4] approach The idea is to use an ontology, which presents to users a
semantically rich conceptual model of the problem domain. The users formulate
their information requirements (that is, queries) in terms of the ontology, and
then receive the answers in the same intelligible form. These requests should
be executed over the data automatically, without an IT-expert’s intervention.
To this end, a set of mappings is maintained which describes the relationship
between the terms in the ontology and the corresponding terminology in the
data source specifications, e.g., table and column names in relational database
schemas.

State-of-the-art OBDA systems that are based on classical OBDA architec-
ture (see Figure 1), however, have shown among others the following limitations.

1. The usability of OBDA systems regarding the user interface is still an open
issue. Even if the vocabulary provided by the ontology is familiar to end-
users, the user may find difficult to formulate complex queries when several
concepts and relationships are involved.



2. OBDA systems critically depend on a suitable ontology and the correspond-
ing set of mappings, which are in practice expensive to obtain. Even if we as-
sume that the ontology and mappings are given, they are not static artefacts
and should evolve according to the new end-users’ information requirements.

3. Treatment of query answering is usually limited to query rewriting and there
is little support of distributed query optimisation and processing in OBDA
systems. Moreover, even in the scenarios without data distribution current
state of the art implementations of rewriting-based query answering have
shown serious limitations in scalability [3].

4. Temporal data, streaming, e.g., sensor, data, and corresponding analytical
tools are generally ignored by OBDA systems, which seriously limits their
applicability in enterprises such as Siemens where one has to deal with large
amounts of streaming data from many turbines and diagnostic centres, in
combination with historical, that is, temporal relational data sources.

In the Optique project, we aim at developing a next generation OBDA sys-
tem (cf. Figure 1, right) that overcomes these limitations. More precisely, the
project aims at a cost-effective approach that requires to revise existing OBDA
components and develop new ones, in particular, to support (i) novel ontology
and mapping management components, (ii) user-friendly query formulation in-
terface(s), (iii) automated query translation, (iv) distributed query optimisation
and execution exploiting private and public cloud resources for scale-out, and
(v) rigorous treatment of temporal and streaming data.

In this work we present an initial specification of the architecture of the
Optique system describing the individual system components, their interplay
and interfaces, and establishes agreement on system-wide conventions and stan-
dards. This architecture will serve as a guideline for the modules and components
developed in the technical work packages, and will evolve according to new re-
quirements. The final architecture remains for future work.

2 Optique Architecture

This section presents the designed Optique OBDA solution [5] which aims at
overcoming the limitations of current OBDA systems. Figure 2 shows an overview
of the Optique’s solution architecture and its components. The architecture is
developed using the three-tier approach and has three layers:

– The presentation layer consists of four main user interfaces, mainly Web
based: (i) to configure and log-in into the system, (ii) to compose queries,
(iii) to visualise answers to queries, and (iv) to maintain the system by
managing ontologies and mappings. The first three interfaces are for both
end-users and IT-experts, while the fourth one is meant for IT-experts only.

– The application layer consists of several main components of the Optique’s
system, supports its machinery, and provides the following functionality:
(i) query formulation, (ii) ontology and mapping management, (iii) query
answering, and (iv) processing and analytics of streaming and temporal data.



Cloud API

data streamsRDBs, triple stores, 
temporal DBs, etc.

Stream connectorJDBC, Teiid

... ...

Information Workbench frontend API* 
Infor. Workbench 

frontend API* Information Workbench frontend API* Infor. Workbench 
frontend API* 

Cloud (virtual 
resource pool)

Ans. visual.: Workbench
Query Formulation

Interface 

Answers visualisation  Optique's Configuration 
Interface

Ontology and Mapping 
Management Interface

Ontology editing 
Interface: Protégé

Presentation
Layer

Query Answering Component

External visualisation 
engines

Workbench visualisation
engine

Shared 
triple 
store

Sesame

- ontology
- mappings
- configuration
- queries
- answers
- history
- lexical 
   information
- etc.

M
ap

pi
ng

s

Ontology and Mapping Manager's Processing Components 

Ont/Mapp matchers

Ont/Mapp 
bootsrappers

Query Formulation Processing Components

Query by Navig.
1-time Q 
SPARQL Stream Q

Context Sens. Ed.
1-time Q 
SPARQL Stream Q

Direct Editing
1-time Q 
SPARQL Stream Q

Faceted searchQuery Ans man
1-time Q 
SPARQL Stream Q

QDriven ont 
construction

1-time Q 
SPARQL Stream Q

Export functional

mining
log analysis

...

Stream analytics
ranking, abduction
provenance, etc.

M
et

ad
at

a 

Configuration 
of modules

LDAP 
authentification

Feedback funct.

Sesame

Query transformation

Query rewriting
1-time Q 
SPARQL

Stream 
Q

 Semantic QOpt.
1-time Q 
SPARQL

Stream 
Q

Syntactic QOpt
1-time Q 
SPARQL

Stream 
Q

Sem indexing
1-time Q 
SPARQL

Stream 
Q

Query Execution
1-time Q 

SQL->RDF
Stream 

Q

Distributed Query Execution

Q Planner
1-time Q 

SQL
Stream 

Q

Optimization
1-time Q 

SQL
Stream 

Q

Materialization 
module

Shared 
database

JDBC, Stream API

ontology mapping

Bootstrapper

ontology mapping

Analyser

ontology mapping

Evolution Engine

ontology mapping

Transformator

ontology mapping

Approximation
Simplification 

O
W

L API

Federation 
module

Federation 
module

Manager

Ont/Mapp revision control, editing

* E.g., widget development, Java, REST

Ontology Processing

Ontology modularization

Sesame

Front end: 
mainly Web-basedComponent

Group of 
components

Optique 
solution

External 
solution

Components Colouring Convention 
Expert users 

Types of Users  
End users API Application receiving 

answers

Ontology reasoner 1
Ontology reasoner 2

...

Component
Manager,

Setup module

Data,
Resource  
Layer

Application
Layer

Optique Platform: Integrated via Information Workbench

Fig. 2. The general architecture of the Optique OBDA system

Additionally, the Optique system will include an LDAP authentication mod-
ule, to assign different roles to Optique users, and a Configuration module,
to provide a custom initial set-up to the Optique components.

– The data and resource layer consists of the data sources that the system
provides access to, i.e., relational, semistructured, temporal databases and
data streams. It also includes capabilities to exploit virtual resources such
as storage and compute infrastructure available through cloud offerings.

The entire Optique system will be integrated via the Information Workbench
(IWB) platform9 [6]. The IWB is a generic platform for semantic data manage-
ment, which provides a shared triple store for managing the OBDA system assets
(such as ontologies, mappings, query logs, (excerpts of) query answers, database
metadata, etc.), generic interfaces and APIs for semantic data management (e.g.
ontology processing APIs). Moreover, the IWB provides general functionality for
user management, fine-grained access control and configuration file management.

In addition to these backend data management capabilities, the Information
Workbench comes with a flexible user interface that will be used for implement-
9 www.fluidops.com/information-workbench/

www.fluidops.com/information-workbench/


External 
visualisation 

engines

Workbench 
visualisation

engine

Shared 
triple 
store

Sesame API
- ontology
- mappings
- configuration
- queries
- answers
- history
- lexical 
   information
- etc.

mining
log analysis

...

Stream analytics

Query Formulation Processing Components

Context Sens. Ed.
1-time Q 
SPARQL Stream Q

Direct Editing
1-time Q 
SPARQL Stream Q

Export 
functionality

Answers to stream 
queries, e.g., CSPARQL

Answers to 1-time 
queries, e.g., SPARQL

Users Feedback 
functionality

Integrated via Information Workbench

Information Workbench frontend API (E.g., widget dev., Java, REST)

Application
Layer

Query Formulation
Interface 

Presentation
Layer

Ontology & 
Mapping Manager's

Processing 
Components 

Ont/Mapp 
revision, 
control, 
editing

Communication 
Chanel or Hub

Query Answering   Component

Query transformation

Answer manager
1-time Q 

SQL->RDF Stream Q

Distrib. Query 
Execution

Shared 
database

Query by Navig.
1-time Q 
SPARQL Stream Q

Faceted 
search

Answer 
Manager 

Hub

1-time Q 
SPARQL Stream Q

QDriven ont 
construction

OWL API

Front end: 
mainly Web-basedComponent

Group of components

Optique solution
External solution

Components Colouring Convention 
Expert users 

Types of Users  

End users API

Application receiving 
answers

Configuration
 of modules

LDAP 
authentification

Ontology Processing

Ontology 
modularization

Ontology reasoner 1
Ontology reasoner 2

...

Fig. 3. Query Formulation components of the Optique OBDA system

ing the query formulation components. The user interface follows a semantic wiki
approach, based on a rich, extensible pool of widgets for visualization, interac-
tion, mashup, and collaboration, which can be flexibly integrated into semantic
wiki pages, allowing developers to compose comprehensive, actionable user in-
terfaces without any programming efforts.

In the following sections we describe in detail the main four application layer
components together with their respective sub-architectures.

2.1 Query Formulation Component

The query formulation component aims at providing a user-friendly interface for
non-technical users combining multiple representation paradigms [7]. We intend
to design and implement novel techniques to exploit the semantics of the under-
lying ontology in order to formulate both complex and valid queries, as well as
to use already existing techniques, e.g., [8,9]. Furthermore, this component will
also integrate a query-driven ontology extension subcomponent to insert new
end-users’ information requirements in the ontology. Figure 3 shows the main
query formulation subcomponents for the Optique OBDA solution and their in-
teraction with other components of the system. Next we give a brief overview of
each of them. Note that many subcomponents deal with both one-time queries,
e.g., SPARQL queries, and continuous queries, e.g., CSPARQL queries.
1. Editing components. Different users may cooperate on the same query or



set of queries, thus, the Optique solution aims at providing (at least) three
kinds of interfaces to formulate the query: direct editing, context sensitive
editing, and query by navigation exploiting faceted search and other naviga-
tion paradigms. IT-experts may prefer the direct editing of the query using
a formal language (e.g. SPARQL), while other users will be provided with a
less technical interface, e.g., query by navigation. Additionally, direct editing
should also allow the possibility of exploiting the ontology, and provide con-
text sensitive completion. All interfaces should provide views on the partially
constructed query, and users should be able to switch between views at will.

2. Query-driven ontology construction component. The ontology may not in-
clude all vocabulary needed by end-users. Moreover, the vocabulary is to a
certain extent specific to individuals, projects, departments, etc., and subject
to change. We consider it crucial to keep the ontology up-to-date w.r.t. end-
user needs. Thus, the Query-driven ontology construction component will
deal with four different changing scenarios driven by end-user requirements:
(a) Adding new synonyms. Concept synonyms (e.g. annotation labels) do

not represent new logical extension of the ontology, and hence end-users
will be able to add them to the ontology with no (logical) harm. For ex-
ample, the concept WellBore can be extended with the labels “drill hole”
or “borehole”. To avoid an overloading of the ontology with synonyms, we
advocate a separation between the ontology (e.g. logical axioms) and the
terminological information (e.g. synonyms, descriptions, related terms,
etc.) as proposed in [10].

(b) Adding basic extensions. End-user queries may also require basic ex-
tension of the ontology hierarchy, such as adding a new concept, say,
GeologicalWellBore, under WellBore (i.e. GeologicalWellBore v WellBore).
These types of additions can be considered safe [11] since they repre-
sent a conservative extension of the ontology. However, other additions
to the ontology may require further analysis by the IT-expert if they
are not conservative extensions (e.g. reclassifying the concept WellBore
under the new concept PlannedSideTrack).

(c) “On the fly” extensions. This represents the more challenging scenario
where we intend to exploit ontology learning techniques in order to
mine formulated queries and identify new relevant concepts and rela-
tions (e.g., [12,13]). Ontology alignment techniques (e.g. LogMap [14])
will also be required in order to relate the new vocabulary to the existing
ontology concepts.

(d) IT-expert assistance. In the cases where the manual or on-the-fly exten-
sions are insufficient, the assistance of the IT-expert will be required to
extend the ontology accordingly.

3. The Answer Manager component. This component should deal with the (ba-
sic) visualization of the query results and their transformation into the re-
quired output formats (e.g. input formats of external tools).

4. The User Feedback component. This component is intended to allow the user
to semi-automatically refine a query if the (partially) obtained results are
not the expected ones. Furthermore, similar or related queries to the par-
tially constructed query will also be suggested in order to help end-users in
the refinement.



This component interacts with other components of the Optique OBDA system:

1. The Ontology Revision Control system. Different versions of the ontology
may exist concurrently (e.g. extensions driven by different formulated queries
or query requirements). These versions will be managed by the IT-experts
through a revision control system (from the Ontology and Mapping manage-
ment system) in order to detect logical defects (e.g. unsatisfiabilities), logical
conflicts among versions as in [15], and OWL 2 profile violations (e.g. a new
version is outside the OWL 2 QL profile).

2. The Ontology Processing component. The ontology will be a key element for
the query formulation component and thus, the ontology processing com-
ponent (e.g. OWL API) will also play an important role. Furthermore,
logic-based ontology modularization techniques [16] will also be exploited
to achieve a good balance between overview and focus when dealing with
large ontologies. The properties of such modules guarantee that the seman-
tics of the concepts of interest is preserved while providing (in general) a
much smaller fragment of the ontology.

3. Shared triple store. The Query formulation component accesses the Shared
triple store where, among others, the ontology, query logs, (excerpts of)
query answers and the lexical information are physically stored.

4. The Query Answering component will transform the formulated queries into
executable and optimized queries with respect to the data sources (e.g.
streaming data, relational databases).

5. Stream Analytics. By exporting answers to this component component one
can do, e.g., data mining in answers for continuous queries.

6. The Visualisation Engines allow to visualise both queries and query answers.

2.2 Ontology and Mapping Management Component

The ontology and mapping management component [17] will provide tools and
methodologies to (i) semi-automatically bootstrap an initial ontology and map-
pings and (ii) maintain the consistency between the evolving mappings and the
evolving ontology.

In Figure 4 we present the Ontology and Mapping Management component
(the O&M manager) of the Optique OBDA system. The O&M manager has a
Web interface at the presentation layer which will also include the well known
ontology editor Protégé for sophisticated extensions over the ontology. Function-
alities of the O&M manager are intended for IT-experts rather than end-users.
The manager includes five subcomponents:

1. The O&M Bootstrapper. OBDA systems crucially depend on the existence
of suitable ontologies and mappings. Developing them from scratch is likely
to be expensive and a practical OBDA system should support a (semi-
)automatic bootstrapping of an initial ontology and set of mappings. Thus,
the Optique system will be equipped with a bootstrapper, a routine that takes
a set of database schemata and possibly instances over these schemata as
an input, and returns an ontology and a set of mappings connecting the
ontology entities to the elements of the input schemata.



External 
visualisation 

engines

Workbench 
visualisation

engine

Configuration
 of modules

LDAP 
authentification

Integrated via 
Information Workbench

Information Workbench frontend API 
(E.g., widget development, Java, REST)

 Application,
 Internal Data 
 Layer

Presentation
Layer

Query Formulation 
Processing 

Components

Ontology and Mapping 
Management Interface

Ontology editing 
Interface: Protégé

Query
driven

ontology
construction

Ontology & Mapping Manager's
Processing Components

O&M matching,
alignment system

O&M 
evolution and 
transformation 

engine 

O&M 
analyser, 
reasoner

O&M revision, 
control, editing

O&M
bootstrapper

Front end: 
mainly Web-basedComponent

Group of components

Optique solution
External solution

Components Colouring Convention 

API

Application 
receiving answers

OWL API
Sesame API

Shared 
triple 
store

- ontology
- mappings
- configuration
- queries
- answers
- history
- lexical 
   information
- etc.

Ontology Processing

Ontology 
modularization

Ontology reasoner 1
Ontology reasoner 2

...

Fig. 4. Ontology and Mapping Management component of the Optique OBDA system

2. The O&M Matching and alignment system. The bootstrapped ontologies will
be aligned with domain ontologies using state of the art ontology alignment
techniques10 (e.g. LogMap [14]).

3. The O&M Analyser and reasoner. The ontologies and the mappings are
not static objects and are subject to frequent changes. The O&M analyser
will check ontologies and mappings for defects caused by these changes.
We distinguish between logical and modelling defects. The three types of
logical defects that are usually discussed in the literature (see, for exam-
ple, [18,19]) are inconsistency, unsatisfiability, and incoherency. In OBDA
scenarios empty mappings will also be an important logical defect. A map-
ping of an OBDA setting is empty if it does not propagate any individuals
(resp. pairs of individuals) into any concept (resp. property) in the ontol-
ogy. Modelling defects are less intuitive and less formally defined than logical
ones. Typical modelling defects are redundancy [20] (e.g. redundant axioms,
concepts, and mappings) and unexpected entailments (e.g. those entailments
that do not correspond to the expected by domain experts [21]).

4. The O&M Evolution and transformation engine. The functionality of this
component is twofold. On the one hand, it performs debugging on defects
found by the analyser, and returns a debugged version of the ontology and
the mappings. In the development of the Optique OBDA system we plan
to exploit existing techniques from ontology evolution, e.g. [22,23]. On the

10 http://www.ontologymatching.org/

http://www.ontologymatching.org/


other hand, it may perform several kinds of transformations of the ontology
and the mappings: for instance, it should transform an input ontology which
is in a language not supported by the OBDA systems (e.g., OWL 2) and
return a version of the ontology into the supported language (e.g., OWL 2
QL profile). Also, it may perform transformations of the mappings related
to formal properties of the mappings or to optimisation strategies [24]. This
may involve changes in the syntax and/or semantics of the ontology.

5. The O&M Revision, control and editing system will support versioning and
editorial processes for both ontologies and mappings. It will also act as a
hub, coordinating interoperation between the analyser and evolution engine.

The O&M manager interacts with other components of the Optique system:
1. It accesses the Shared triple store, where the ontology and mappings are stored.
It both reads and updates the ontology and mappings. 2. The analyser, align-
ment system, and evolution engine access to reasoning capabilities, e.g., ontology
reasoners, ontology modularisation engines, etc.3. The Query Formulation Com-
ponent can call the O&M manager when a user decides to extend the ontology.
We refer to this as query-driven ontology construction.4. The O&M manager is
connected to a Visualisation engine to visualise ontology and mappings.

2.3 Query Answering Component

Covering the backend functionalities (query planning, optimization, execution,
and use of cloud resources), the query answering component is compound of
two large subcomponents: (i) query transformation and (ii) distributed query
processing components. The query transformation component is responsible for
translating, also known as rewriting, queries received from the query formula-
tion component, e.g., SPARQL queries, into an optimised executable code that
is evaluated over the data sources and streams in the data layer. The Quest
system [25] implements sophisticated rewriting and optimization techniques and
is going to be the core part of the Optique’s query transformation.

The distributed query processing subcomponent provides query planning and
execution. It distributes queries to individual servers and uses massively paral-
lelised (cloud) computing. The ADP [26] for complex dataflow processing in the
cloud is going to be the core part of Optique’s distributed query processing.

Query Transformation Component Figure 5 presents the architecture of
the Query transformation (QT) component of the Optique system [27]. The QT
component interacts with other components of the Optique OBDA system:

1. The query formulation component provides a query interface for end-users.
This component receives queries from an end-user and send them to the QT
component, e.g., via Sesame API.

2. The configuration module provides the configuration for the QT module that
is required for query transformation performance.

3. The ontology processing module (a group of components such as ontology
reasoners, modularisation systems, etc.) is called by the QT module to per-
form semantic optimisation.



Presentation 
 Layer

Integrated via  Information Workbench

 Application
 Layer

Query transformation

Shared 
triple 
store

Sesame

Query rewriting
1-time Q 
SPARQL

Stream 
Q Semantic QOpt.

1-time Q 
SPARQL

Stream 
Q

Syntactic QOpt
1-time Q 
SPARQL

Stream 
Q

Sem indexing
1-time Q 
SPARQL

Stream 
Q

Query 
Transformation 

Manager

Query execution
1-time Q 
SPARQL

Stream 
Q

Distributed Query 
Execution

Federation 
module

Materialization 
module

Set up 
Module

Analytics

data streamsRDBs, triple stores, 
temporal DBs, etc.

... ...

Optique's configuration 
interface

Data,
Resource
Layer

Shared 
database

Front end:
mainly Web-basedComponent Group of 

components
Optique solution

Components Colouring Convention 
Expert 
users 

Users  

Configuration
 of modules

LDAP 
authentification

Stream connectorJDBC, Teiid

Infor. Workbench 
frontend API* 

Query Formulation 
Processing 

Components

Stream analyticsOntology Processing

Ontology modularization

Ontology reasoners

O
W

L API

Sesame

M
ap

pi
ng

s
M

et
ad

at
a 

External solution

Applications
Receiving
Answers

Fig. 5. Query transformation component of the Optique OBDA system

4. The distributed query processing component receives rewritten queries from
the QT module and performs their evaluation over data sources.

5. The (internal) shared database contains the technical data required for data
answering process such as semantic indices, answers to queries, etc. This
database will be only shared by the QT component and the distributed
query processing component.

6. The shared triple store contains the data that can be used by (the most of)
the components of the Optique OBDA system. E.g., it contains the ontology,
the mappings, the query history, etc.

7. The stream analytics module analyzes answers to the stream queries.
8. Data sources (RDBs, triple stores, data streams) can be also accessed by the

QT module during the query execution.

The Query Transformation Manager (QTM) is the principal component of
the QT component and will orchestrate the QT process. The QT process is
triggered when a query is received from the query formulation component. Next
we describe the role of each QT subcomponent and their interplay in the query
transformation process. The process can be divided into several stages:

1. Initialisation. At this stage the Configuration module sends the configuration
to the Set-up module, which in turn configure the other QT submodules. The
initialisation includes several steps in which the input ontology and mappings



get analysed and optimised so as to allow the rewriting and optimisation
algorithms to be fast, and the query evaluation over the data sources to be
more efficient. The semantic indexing and materialisation modules are in
charge of creation and maintenance of so-called semantic index.

2. Query rewriting. The QTM sends the (SPARQL) query Q received from the
query formulation component to the query rewriting module, which is in
charge of rewriting the query in the required format; for example, SQL if it
is supposed to be evaluated over RDBs or Streaming SPARQL for querying
data streams. Further, for the sake of simplicity, we will assume that the
target query format is SQL. Along with the rewriting, this module optimises
the rewritten query both syntactically and semantically as described below:
– During the transformation process, the initial query (e.g., SPARQL)

might be turned into a number of SQL queries Q1, . . . , Qn such that
their union is equal to Q. In the Syntactic and Semantic optimisation
stages, these queries get optimised to improve the performance, e.g.,
some joints, conditions, filters within this SQL queries are deleted. In
the former stage, the methods that are used to detect what parts of the
queries have to be optimised are syntactical, that is, they are based only
on the shape of a query and do not involve any reasoning. In the latter
stage, the methods take into account semantic information such as query
containment, integrity constraints of the data sources, etc.

3. Query execution. After rewriting and optimization, the queries Q′
i1
, . . . , Q′

im
are sent to the query execution module. This module decides which of these
queries, if any, need to be evaluated using distributing query execution, and
which can be evaluated by the standard query answering facilities. In the for-
mer case, the corresponding queries are sent to the distributed query process-
ing component. In the latter case, the corresponding queries are evaluated di-
rectly over the data sources by standard means. If needed, some of the queries
can be evaluated over a federated database system, by the Federation module.

4. Query answer management. After the query evaluation process, the answers
to the queries that have been sent directly to the data sources are returned
to the QTM module. The manager transforms them into the required format
and sends them back to the query formulation component, which represents
the answers to end-users. The queries that has been sent to the distributed
query processing component do not necessarily go directly to the query an-
swer manager, but to a shared database. The reason is that the answers
can be up to several GBs, so sending them directly to the QTM may hang
the system. The QTM receives the signal that the answers are in the shared
database and metadata about the answers. Then, together with the analytics
module, it decides how to proceed further. The answers to one-time queries,
e.g. SQL queries over RDBs, eventually go to the query formulation compo-
nent, while the answers to stream queries go to the stream analytics module.

Distributed Query Processing Component The Distributed query pro-
cessing component [28] aims at achieving the efficiency in Big Data scenarios
by both massive parallelism, i.e., running queries with the maximum amount of



Query Answering Component

data streamsRDBs, triple stores, 
temporal DBs, etc.

... ...
Cloud (virtual 
resource pool)

Optique's configuration interfacePresentation 
 Layer

Externat 
Data
Layer

Shared 
database

Query transformation

Query Rewriting
1-time Q 
SPARQL Stream Q

Answ Manager
1-time Q 
SPARQL Stream Q

Front end:
mainly Web-basedComponent Group of components Optique solution

Components Colouring Convention 
Expert users 

Types of Users  

Integrated via  Information Workbench

Configuration
 of modules

LDAP 
authentification

Distributed Query    Execution based on ADP

Master

Data 
Connector

Optimisation 
Engine

Optimisation 
Engine

Execution 
Engine

Execution 
Engine

Stream
Connector

WorkerWorker Worker Worker

P2P Net

Fast Local Net

ADP Gateway: JDBC, Stream API

  Application,
  Internal Data 
  Layer

Cloud APIStream connectorJDBC, Teiid

Externat 
Cloud

Fig. 6. General architecture of the ADP component within the Optique System

parallelism at each stage of execution, and elasticity, i.e., by allowing a flexibil-
ity to execute the same query with the use of resources that depends on the the
resource availability for this particular query, and the execution time goals. The
distributed query execution is based on the ADP (Athena Distributed Process-
ing) [26] a system for complex dataflow processing in the cloud. ADP has been
developed and used successfully in several European projects such as Health-e-
Child [29].

The general architecture of the distributed query processing component within
the Optique platform is shown in Figure 6. The query is received through the
gateway using JDBC. This communication mainly involves interaction with the
QT component. The Master node is responsible for initialization and coordi-
nation of the process. The optimization engine produces the execution plan for
the query. Next, the execution plan is given to the execution engine which is
responsible for reserving the necessary resources, sending the operators of the
graph to the appropriate workers and monitor the execution. Next we describe
in more detail the distribution process:

– Language and Optimization: A query Q, expressed in SQL, are issued to
the system through the gateway. Q is transformed to a data flow language
allowing complex graphs with operators as nodes and with edges representing
producer-consumer relationships. The first level of optimization is planning,
which results in an SQL query script. We enhanced SQL by adding the table
partition as a first class citizen of the language; it is defined as a set of tuples
having a particular property (e.g., the tuples in the same partition share the



value of a hash function applied on one column). A table is defined as a
set of partitions. The optimizer produces an execution plan in the form of a
directed acyclic graph with all the information needed to execute Q.

– Execution Engine: ADP relies on an asynchronous execution engine. As soon
as a worker node completes one job, it is sending a corresponding signal
to the execution engine. The execution engine uses an asynchronous event
based execution manager, which records the jobs that have been executed
and assigns new jobs when all the prerequisite jobs have finished.

– Worker Pool: The resources needed to execute Q (machines, network, etc.)
are allocated automatically. Those resources are wrapped into containers,
which are used to abstract from the details of a physical machine in a clus-
ter or a virtual machine in a cloud. Workers run Q using a python wrapper of
SQLite (http://www.sqlite.org). This part of the system can also be used
as a standalone single node DB (https://code.google.com/p/madis/).
Queries are expressed in a declarative language which is an extension of
SQL. This language facilitates considerably the use of user-defined functions
(UDFs). The system supports row, aggregate, and virtual table functions.

– Data/Stream Connector: The Data and Stream Connectors (DC and SC)
are responsible for handling and dispatching the relational and stream data
through the network respectively. They are used when the system receives
a request for collecting the results of executed queries. SC uses an asyn-
chronous stream event listener to be notified of incoming stream data, whereas
DC utilizes a table transfer scheduler to receive partitions of relational tables
from the worker nodes.

2.4 Streaming and Temporal Data

Processing and Analytics of Streaming and Temporal Data is primarily moti-
vated by the need of large industries. For example, Siemens encompasses several
terabytes of temporal data coming from sensors, with an increase rate of about
30 gigabytes per day [30]. Addressing this challenge requires a number of tech-
niques and tools which should be integrated in several modules of the Optique
OBDA solution. For example, the query formulation module should support
window queries and the query answering module should support rewriting and
optimised execution of such queries. Additionally, the ontology and mapping
management component is also required to design appropriate formalisms to
support ontological modelling of streaming and temporal data.

The query language that the system should provide to end-users should com-
bine (i) temporal operators, that address the time dimension of data and allow
to retrieve data which was true “always” in the past or “sometimes” in the last
X months, etc., (ii) time series analysis operators, such as mean, variance, con-
fidence intervals, standard deviation, as well as trends, regression, correlation,
etc., and (iii) stream oriented operators, such as sliding windows.

Given a query, mapping languages, and ontology, the Optique system should
be able to translate queries into highly optimised executable code over the un-
derlying temporal and streaming data. This requires techniques for automated

http://www.sqlite.org
https://code.google.com/p/madis/


query translation continuous and temporal queries. Existing translation tech-
niques are limited and they do not address query optimisation and distributed
query processing. Thus, novel approaches should be developed.

3 Conclusions
The Optique system will provide an end-to-end OBDA solution for Big Data
access addressing a number of important industry requirements. The technology
and system will be developed in a close cooperation of six universities, two in-
dustrial partners, and two use cases: Statoil and Siemens. The system will be de-
ployed and evaluated in our use cases. It will provide valuable insights for the ap-
plication of semantic technologies to Big Data integration problems in industry.

Acknowledgements. We are thankful to D. Calvanese, T. Hubauer, M. Meier,
R. Möller, M. Roshchin, and D. Fabio Savo for insightful discussions. The authors
are supported by the EU project Optique (FP7-IP-318338).

References

1. Giese, M., Calvanese, D., Haase, P., Horrocks, I., Ioannidis, Y., Kllapi, H.,
Koubarakis, M., Lenzerini, M., Möller, R., Özçep, O., Rodriguez Muro, M., Rosati,
R., Schlatte, R., Schmidt, M., Soylu, A., Waaler, A.: Scalable End-user Access to
Big Data. In: Rajendra Akerkar: Big Data Computing. Florida : Chapman and
Hall/CRC. To appear. (2013)

2. Crompton, J.: Keynote talk, the W3C Workshop on Semantic Web in Oil &
Gas Industry: Houston, TX, USA, 9–10 December (2008) available from http:

//www.w3.org/2008/12/ogws-slides/Crompton.pdf.
3. Rodriguez-Muro, M., Calvanese, D.: High Performance Query Answering over

DL-Lite Ontologies. In: Knowledge Representation and Reasoning (KR). (2012)
4. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-

Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-
based data access. Semantic Web 2(1) (2011) 43–53

5. Calvanese, D., Giese, M., Haase, P., Horrocks, I., Hubauer, T., Ioannidis, Y.,
Jiménez-Ruiz, E., Kharlamov, E., Kllapi, H., Klüwer, J., Koubarakis, M., Lam-
parter, S., Möller, R., Neuenstadt, C., Nordtveit, T., Özcep, O., Rodríguez-Muro,
M., Roshchin, M., Ruzzi, M., Savo, F., Schmidt, M., Soylu, A., Waaler, A.,
Zheleznyakov, D.: The Optique Project: Towards OBDA Systems for Industry.
In: OWLED. (2013)

6. Haase, P., Hütter, C., Schmidt, M., Schwarte, A.: The Information Workbench as
a Self-Service Platform for Linked Data Applications. In: Proc. of WWW. (2012)

7. Cuenca Grau, B., Giese, M., Horrocks, I., Hubauer, T., Jiménez-Ruiz, E., Khar-
lamov, E., Schmidt, M., Soylu, A., Zheleznyakov, D.: Towards Query Formulation
and Query-Driven Ontology Extensions in OBDA. In: OWLED. (2013)

8. Bechhofer, S., Horrocks, I.: Driving User Interfaces from FaCT. In: Proceedings
of the 2000 International Workshop on Description Logics. (2000) 45–54

9. Catarci, T., Dongilli, P., Mascio, T.D., Franconi, E., Santucci, G., Tessaris, S.: An
ontology based visual tool for query formulation support. In: European Conf. on
Artif. Intell. (ECAI). (2004) 308–312

10. Jimeno-Yepes, A., Jiménez-Ruiz, E., Llavori, R.B., Rebholz-Schuhmann, D.: Reuse
of terminological resources for efficient ontological engineering in life sciences. BMC
Bioinformatics 10(S-10) (2009)

http://www.w3.org/2008/12/ogws-slides/Crompton.pdf
http://www.w3.org/2008/12/ogws-slides/Crompton.pdf


11. Jiménez-Ruiz, E., Cuenca Grau, B., Sattler, U., Schneider, T., Berlanga, R.: Safe
and economic re-use of ontologies: A logic-based methodology and tool support.
In: European Sem. Web Conf. (ESWC). Volume 5021. (2008) 185–199

12. Zhang, J., Xiong, M., Yu, Y.: Mining query log to assist ontology learning from
relational database. In: Frontiers of WWW Research and Development. (2006)

13. Kotis, K., Papasalouros, A., Maragoudakis, M.: Mining query-logs towards learning
useful kick-off ontologies: an incentive to semantic web content creation. IJKEDM
1(4) (2011)

14. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and Scalable Ontology
Matching. In: Int’l Sem. Web Conf. (ISWC). (2011) 273–288

15. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Supporting con-
current ontology development: Framework, algorithms and tool. Data Knowl. Eng.
70(1) (2011) 146–164

16. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. J. Artif. Intell. Res. 31 (2008) 273–318

17. Haase, P., Horrocks, I., Hovland, D., Hubauer, T., Jiménez-Ruiz, E., Kharlamov,
E., Klüwer, J., Pinkel, C., Rosati, R., Santarelli, V., Soylu, A., Zheleznyakov, D.:
Optique System: Towards Ontology and Mapping Management in OBDA Solu-
tions. In: WoDOOM. (2013)

18. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes
in OWL ontologies. J. Web Sem. 3(4) (2005) 268–293

19. Shchekotykhin, K., Friedrich, G., Fleiss, P., Rodler, P.: Interactive Ontology De-
bugging: Two Query Strategies for Efficient Fault Localization. Web Semantics:
Science, Services and Agents on the World Wide Web 12(0) (2012)

20. Grimm, S., Wissmann, J.: Elimination of Redundancy in Ontologies. In: European
Sem. Web Conf. (ESWC). (2011) 260–274

21. Horrocks, I.: Tool Support for Ontology Engineering. In: Foundations for the Web
of Information and Services. (2011) 103–112

22. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite
Knowledge Bases. In: International Semantic Web Conference (1). (2010) 112–128

23. Cuenca Grau, B., Jiménez-Ruiz, E., Kharlamov, E., Zheleznyakov, D.: Ontology
Evolution Under Semantic Constraints. In: Knowledge Representation and Rea-
soning (KR). (2012)

24. Pinto, F.D., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A., Rosati, R., Ruzzi,
M., Savo, D.F.: Optimizing query rewriting in ontology-based data access. In: Int’l
Conference on Extending Database Technology (EDBT). (2013) 561–572

25. Rodriguez-Muro, M., Calvanese, D.: Quest, an OWL 2 QL Reasoner for Ontology-
based Data Access. In: OWLED. (2012)

26. Kllapi, H., Sitaridi, E., Tsangaris, M.M., Ioannidis, Y.E.: Schedule optimization
for data processing flows on the cloud. In: Proc. of SIGMOD. (2011) 289–300

27. Calvanese, D., Horrocks, I., Jiménez-Ruiz, E., Kharlamov, E., Meier, M.,
Rodríguez-Muro, M., Zheleznyakov, D.: On Rewriting and Answering Queries
in OBDA Systems for Big Data. In: OWLED. (2013)

28. Kllapi, H., Bilidas, D., Horrocks, I., Ioannidis, Y., Jiménez-Ruiz, E., Kharlamov,
E., Koubarakis, M., Zheleznyakov, D.: Distributed Query Processing on the Cloud:
the Optique Point of View. In: OWLED. (2013)

29. Health-e-Child: Integrated healthcare platform for european paediatrics (2006)
http://www.health-e-child.org/.

30. Horrocks, I., Hubauer, T., Jiménez-Ruiz, E., Kharlamov, E., Koubarakis, M.,
Möller, R., Bereta, K., Neuenstadt, C., Özçep, Özgür., Roshchin, M., Smeros, P.,
Zheleznyakov, D.: Addressing Streaming and Historical Data in OBDA Systems:
Optique’s Approach. In: Know@LOD. (2013)

http://www.health-e-child.org/

	 Optique: Towards OBDA Systems for Industry 

