Foundations of SPARQL Query Optimization

Michael Schmidt- Michael Meier~ Georg Lausen

University of Freiburg
Institute for Computer Science
Georges-Kohler-Allee, Building 051
79110 Freiburg i. Br., Germany

{mschmidt, meierm, lausen}@informatik.uni-freiburg.de

ABSTRACT to encode knowledge in the Semantic Web, RDF has found its way

We study fundamental aspects related to the efficient processing ofout of the Semantic We_b communit_y and enter_ed _the Wid_er (_jis-
the SPARQL query language for RDF, proposed by the W3C to en- COUrse of Computer Science. Coming along with its application

code machine-readable information in the Semantic Web. Our keyin other areas, such as bio informatics or data integratiqn, large
contributions are (i) a complete complexity analysis for all opera- RDF repositories have been created (see e.g. [18]) and it has re-

tor fragments of the SPARQL query language, which — as a cen- peatedly been obser\(ed that the.d.atabase community is facing new
tral result — shows that the SPARQL operata?1ONAL alone is challenges to cope with the specifics of RDF [6, 16, 19, 3]. =
responsible for the F®.CE-completeness of the evaluation prob- With SPARQL [32], the W3C has recommended a declarative
lem, (ii) a study of equivalences over SPARQL algebra, including query language to extract dgta f“’”ﬁ.RDF graphs. .SPARQL comes
both rewriting rules like filter and projection pushing that are well- With @ powerful graph matching facility, whose basic construct are

known from relational algebra optimization as well as SPARQL- S_O'Ca”ed triple patterns. During query evaluatior_1, variables in-
specific rewriting schemes, and (iii) an approach to the semantic side these patterns are matched against the RDF input graph. The

optimization of SPARQL queries, built on top of the classical chase SO'”“Q” of thhe evaluart]ion process is then describefd bY El set (')fh
algorithm. While studied in the context of a theoretically motivated mapﬁlngs, where eac magp'ﬂgl associates a set o varla_des Wc'lt
set semantics, almost all results carry over to the official, bag-basedgrap components. Beyond triple patterns, SPARQL provides ad-

semantics and therefore are of immediate practical relevance. vanced ope_rators (namelgEECT, AND, FILTER, OPT'O’\.‘AL’ and_
UNION) which can be used to compose more expressive queries.

In this work we investigate fundamental aspects that are directly

Categories and Subject Descriptors related to the evaluation of SPARQL queries. In particular, we re-
H.2.3 [Database M anagement]: Languages-Query languages visit the complexity of the SPARQL query language (considerably

extending and refining previous investigations from [26]) and study
General Terms both algebraic and semantic optimization of the query language

) S from a theoretical perspective. In this line, we present a collection
SPARQL, RDF, Complexity, Query Optimization, SPARQL Alge- of results that we have gathered in previous projects on SPARQL

bra, Semantic Query Optimization query processing, all of which are important background for under
standing the basics of the SPARQL query language and for build-
1. INTRODUCTION ing efficient SPARQL optimizers. In our study, we abstract from

The Resource Description Framework (RDF) [29] is a data for- implementation-specific issues like cost estimation functions, but
rather provide fundamental results, techniques, and optimization

mat proposed by the W3C to encode information in a machine- . AR
readable way. From a technical point of view, RDF databases are.SChemeS that may be fruitfully applied in virtually every SPARQL

collections of gubject,predicate,objectriples, where each triple implementation. Accounting for this objective, we partially include

encodes the binary relatigmredicatebetweensubjectand object important results from previous investigations (e.g. on the complex-

and represents a single knowledge fact. Due to their homogeneou?ﬁi’. of SPARQL orton e_llgebr]?lc optln;lzatlon flrom '[126' 1), tlo ”“?‘ke i
structure, RDF databases can be understood as labeled directe |skpa|ciﬁr an ?X ?nsflé;&%erﬁnc? or pleopetv;F?AgreLp anning to
graphs, where each triple defines an edge fromsthigectto the work in the context o QL or to implemen QL engines.

. . . S . Our first major contribution is a complete complexity analysis,
objectnode under labgbredicate[12]. While originally designed comprising all possible operator fragments of the SPARQL query

*The work of this author was funded by Deutsche Forschungsge- language. Our investigation separates subsets of the language that

meinschaft, grant GRK 806/03 and grant LA 598/7-1. can be evaluated efficiently from more complex (and hence, more
expressive) fragments and relates fragments of SPARQL to estab-
lished query models, like e.g. conjunctive queries. Ultimately, our
results deepen the understanding of the individual operators and
their interrelations, and allow to transfer established results from
other data models into the context of SPARQL query evaluation.

In our analysis of SPARQL complexity, we take the combined

complexity of the SPARQL EaLUATION problem as a yardstick:

(©ACM, 2010. This is the author’s version of the work. It is pEshere given query@, data setD, and candidate solutio§ as input,

by permission of ACM for your personal use. Not for redisttibn. The is S contained in the result of evaluati@ on D? Previous in-
definitive version was published in ICDT 2010.

vestigations of SPARQL complexity in [26] have shown that full rules, these equivalences allow to transfer established RA optimiza-
SPARQL is P®AcE-complete. Refining this important result, we tion techniques, such as projection and filter pushing, into the con-
show that already operatorF@IONAL alone makes query evalua- text of SPARQL optimization. Going beyond the adaption of ex-
tion PSAce-hard. From a practical perspective, we observe that isting techniques, we also tackle SPARQL-specific issues, such as
the high complexity is caused by the unlimited nesting of-O the simplification of expressions involving negation, which —when
TIONAL expressions and derive complexity bounds in the polyno- translating SPARQL queries into SA according to the SPARQL se-
mial hierarchy for fragments with fixed €¥1ONAL nesting depth. mantics — manifests into a characteristic combination of the selec-
In summary, our results show that operat@rT@NAL is by far the tion and left outer join operator. Ultimately, our results improve the
most involved construct in SPARQL, which suggests that special understanding of SPARQL algebra and lay the foundations for the
care in query optimization should be taken in this specific operator. design of comprehensive optimization schemes.

Having established these theoretical results we then turn towards Complementary to algebraic optimization, we study constraint-
SPARQL optimization. To give some background, the semantics based optimization, also known as semantic query optimization
of SPARQL is formally defined on top of a compact algebra over (SQO), for SPARQL. The idea of SQO, which is well-known from
mapping sets. In the evaluation process, the SPARQL operators arghe context of conjunctive query optimization (e.g., [2]), deductive
first translated into algebraic operations, which are then evaluateddatabase (e.g., [4]), and relational databases (e.g., [15]), isto e
on the data set. More preciselyNA is mapped to a join opera- ploit integrity constraints over the input database. Such constraints
tion, UNION to an algebraic union, ©rioNAL to a left outer join are valuable input to query optimizers, because they restrict the
(which allows for the optional padding of information),LFER to state space of the database and often can be used to rewrite queries
a selection, and 8 ECT to a projection. On the one hand, there into equivalent, but more efficient, ones. Constraints could be user-
are many parallels between these SPARQL algebra (SA) operatorsspecified, automatically extracted from the underlying database, or
and the operators defined in relational algebra (RA), e.g. the study— if SPARQL is evaluated on top of an RDFS inference system —
in [1] reveals that SA and RA have the same expressive power. Onmay be implicitly given by the semantics of the RDFS vocabulary.
the other hand, the technical proof in [1] indicates that a semantics- Our SQO approach splits into two parts. First, we translateA
preserving SA-to-RA translation is far from being trivial and shows connected blocks inside queries into conjunctive queries, optimize
that there are still fundamental differences between both. them using the well-known chase algorithm [21, 14, 2, 8], and

Tackling the specific challenges of the SPARQL query language, translate the optimized conjunctive queries back into SPARQL. Ina
over the last years various proposals for the efficient evaluation of second step, we apply SPARQL-specific rules that allow us to opti-
SPARQL have been made, comprising a wide range of optimiza- mize more complex subqueries, such as queries involving operator
tion techniques such as normal forms [26], triple pattern reordering OPTIONAL. To give an example, we propose a rule that allows us
based on selectivity estimations [20, 23], or RISC-style query pro- to replace operator ©rIONAL by AND in cases where the pattern
cessing [23]. In addition, indices [13] and storage schemes [30, inside the @TIONAL clause is implied by the given constraint set.
34, 6, 3] for RDF have been explored, to provide efficient data ac- We summarize the central contributions of this work as follows.
cess paths. Another line of research is the translation of SPARQL 4 e present novel complexity results for SPARQL fragments,
queries into established data models like SQL [S, 9] or datalog [27], showing as a central result that already the fragment containing
to evaluate them with traditional engines that exploit established gperator @TiONAL alone is PBAcE-complete (in combined
optimization techniques implemented in traditional systems. complexity). Further, we derive tight complexity bounds in the

One interesting observation is that the “native” optimization pro- polynomial hierarchy for expressions with fixed nesting depth
posals for SPARQL (i.e. those that do not rely on a mapping into of OpTiONAL subexpressions. Finally, we show that al-O
the relational context or datalog) typically have a strong focus on 1 onaL -free fragments are either NP-complete (whenever op-
SPARQL Avp-only queries, i.e. mostly disregard the optimization erator AND cooccurs with WION or SELECT) or in PTIME.
of queries |nvoIV|ng pperators “I.(e”FrER or OPT'O'\!AL (cf. [13, e We identify a large set of equivalences over SPARQL algebra.
20,23, 8]). The eff_|C|gnt evalu_atlor] oft-only queries (or AiD- As a central tool, we develop the conceptgpossibleandcer-
_connected blocks |n_3|de queries) is undoubt_edly an important task tain variables which constitute upper and lower bounds for the
n ISPSRQL evgluatll(ofn, ;%:';e ibo"?‘“.‘e”“oge.ﬂ approachis are yariables that may be bound in result mappings, account for the
;ﬁ/g&:) (tairﬁir;:t?or\:vg(r:he%:e shou% ;)Iggn;';g:jss :kéicgmg ;etioenn;)f characteristics of SPARQL, and allow us to state equivalences
more i?wolved ueries. To give evidence for this claimp the experi- over SPARQL algebra in a clean and compact way. Our in-
mental stud ir?[lg] révealg severe perf b I’ K P h vestigation comprises both the study of optimization schemes

; y © periormance ott ENECKS WNeN 1 1 own from the relational context (such as filter and projection
evaluating complex SPARQL queries (in particular queries involv- pushing) and SPARQL-specific rewriting techniques.

ing operator ®@TIONAL) for both existing SPARQL implementa- h - .
tions and state-of-the-art mapping schemes from SPARQL to SQL. ° We pfes9”t an SQOsc eme to optimize SPARQL queries und_er
a set of integrity constraints over the RDF database. Our opti-

One reason for these deficiencies may be that in the past only o h adh) limited . b
few fundamental work has been done in the context of SPARQL m!zatlc;n appr:oac a _efres (vetis nort] imited) to const_rlalnts 0b-
query optimization (we resume central results from [26, 27] later tained rqmt e RDFS in erence mechanism [29]. 1t b.u' ds upon

the classical chase algorithm to optimize®-only queries, but

in this paper) and that the basics of SA and its relation towards RA | le-based optimizati ¢ | .
are still insufficiently understood. We argue that — like in relational also supports rule-based optimization of more complex queries.

algebra, where the study of algebraic rewriting rules has triggered ® While established for a theoretically motivated set semantics,
the development of manifold optimization techniques — a study of ~ We show that almost all results carry over to the official, bag-
SPARQL algebra would alleviate the development of comprehen- ~ based semantics proposed by the W3C, so both our complexity
sive optimization approaches and therefore believe that a schematic ~@nd optimization results are of immediate practical interest.
investigation of SPARQL algebra is long overdue. Addressing this We start with the preliminaries in Section 2, discuss the complex-
task, we present an elaborate study of SA equivalences, covering allity of SPARQL evaluation in Section 3, study SPARQL algebra in
its operators and their interrelations. When interpreted as rewriting Section 4, and present our SQO scheme for SPARQL in Section 5.

2. PRELIMINARIES

We assume that the set of natural numibéoes not include the
elementd and defineN, := N U {0}. Furthermore, we introduce
the notationi € [n] as a shortcut foi € {1,...,n}.

2.1 TheRDF Data Format

We follow the notation from [26] and consider three disjoint sets
B (blank nodes) L (literals), andU (URIs) and use the shortcut
BLU to denote the union @B, L, andU. As a convention, we use
quoted strings to denote literals (e.g. “Joe”, “30") and prefix blank
nodes with “_:". AnRDF triple (v1,v2,v3) € BU x U x BLU
connects subject; through predicate- to objectvs. An RDF
databasealso calledRDF documentis a finite set of triples.

2.2 The SPARQL Query Language

We now introduce two alternative semantics for SPARQL evalu-
ation, namely @etand abag semanticsThe set-based semantics is
inspired by previous theoretical investigations in [24, 1]; the bag se-
mantics closely follows the W3C Recommendation [32] and [25].

Syntax. Let V' be a set of variables disjoint fro LU . We dis-
tinguish variables by a leading question mark symbol, e.g. writing
?x or Tname. We start with an abstract syntax for filter conditions.
For?x,7y € V ande,d € LU we definefilter conditionsrecur-
sively as follows. The expressiofis = ¢, 7z =7y, ¢ = d, and
bnd(?z) are atomic filter conditions. Second, f;, R. are filter
conditions, themR1, R1 A Rz, andR; V R; are filter conditions.

By vars(R) we denote the set of variables occurring in filter ex-
pressionR. Next, we introduce an abstract syntax for expressions
(where we use ©T as a shortcut for operatorFI10NAL):

DEFINITION 1 (SPARQL EXPRESSION. A SPARQL expres-
sionis an expression that is built recursively as follows. (1) A
triple patternt € UV x UV x LUV is an expression. (2) ©),

Q- are expressions anfd is a filter condition, ther®): FILTER R,
Q1 UNION Q2, Q1 OPT Q2, and@; AND Q- are expressions]

The official W3C Recommendation [32] defines four different
types of queries on top of expressions, namely T, Ask, CON-
STRUCT, and DEscRIBEqueries. We will restrict our discussion to
SPARQL SLECT and Ask queries: SELECT queries extract the
set of all result mappings, while 9 queries are boolean queries
that returrtrue iff there is one or more resulffalseotherwise.

DEFINITION 2 (SELECT QIERY, ASK QUERY). Let @ be
a SPARQL expression and |18tC V' be a finite set of variables. A
SPARQL SELECTquery is an expression of the forneS=c15(Q).
A SPARQL Ask query is an expression of the forms&(Q). O

In the remainder of the paper we will mostly deal with SPARQL
SELECT queries. Therefore, we usually denote thenSBARQL
queries or simplyqueries As a notational simplification, we omit
braces for the variable set appearing in the subscript of the St
operator, e.g. Writing BLECT74 2,/ (Q) for SELECT{2, 741 (Q).

A Set-based Semanticsfor SPARQL. Central to the evaluation
process in SPARQL is the notion of so-called mappings, which ex-
press variable-to-document bindings during evaluation. Formally,
a mappingis a partial function : V' — BLU from a subset of
variablesV to RDF termsBLU. By M we denote the universe of
all mappings. The domain of a mappipgdom(x), is the subset
of V' for which p is defined. We say that two mappings, 2
are compatible, writtep; ~ puo, if they agree on all shared vari-
ables, i.e. ifu1 (?x) = p2(?z) for all 7z € dom(py) N dom(pz).

1The main challenge of query evaluation (and our focus here) lies
in the core evaluation phase, which is the same for all query forms.

We overload functiomars (defined previously for filter conditions)
and denote byars(t) all variables in triple patterr. Further,

by wn(t) we denote the triple pattern obtained when replacing alll
variables?z € dom(u) Nwars(t) int by p(?x).

ExampPLE 1. Consider the three mappings := {?x— al},
w2 = {?x+— a2 ?y— b2}, andus := {?x+— al ?z+— cl}. It
is easy to see thatom(u1) = {?x}, dom(u2) = {7z, 7y}, and
dom(ps) = {?z,?z}. Further, we can observe that ~ us, but
1 A e andus £ ps. Given triple patterrty (¢, 7z, 7y) we
havevars(t1) = {?z, 7y} and e.gu2(t1) = (¢, a2 b2). O

We next define the semantics of filter conditions w.r.t mappings.
A mappingu satisfieghe filter conditionbnd(?x) if variable 7z is
contained in thelom(u); the filter conditions?z = ¢, 7z =7y,
andc = d are equality checks that compare the valug.(fz)
with ¢, pu(?z) with 1(?y), ande with d, respectively; these checks
fail whenever one of the variables is not boung.inThe boolean
connectives-, V, andA are defined in the usual way. We wrjie=
Riff p satisfies filter conditior? (cf. Appendix A.1 for details).

The solution of a SPARQL expression or query over document
is described by a set of mappings, where each mapping represents
a possible answer. The semantics of SPARQL query evaluation is
then defined by help of a compact algebra over such mapping sets:

DEFINITION 3 (SPARQL %T ALGEBRA). LetQ, 2, 2, be
mapping setsRk denote a filter condition, anl C V' be a finite set
of variables. We define the algebraic operations juij) (inion (),
minus (\), left outer join {X), projection (), and selectiond):

X Qe={u Upr | € U, pir € ety ~ pir}
QUQ,. ::{,U,|,LL€QZ OFMGQT}

U\ Q ={ € Q |forall u, € Qp:py o pr}
Ql ™ QTZ: (Ql X Qr) U (QJ\QT)

ms(Q) ={p1 | 2 : w1 Upe € QA dom(ur) C SA
dom(u2) NS = 0}
or() ={peQ|ukE R}

We refer to these algebraic operationsSS&#ARQL set algebra

To define the evaluation result of expressionsLECT queries,
and Ask queries we follow the compositional semantics from [26]
and define a functiofi.] p that translates them into SA:

DEFINITION 4 (SPARQL %1 SEMANTICS). Let D be an
RDF document, a triple pattern@, @1, Q2 SPARQL expressions,
R afilter condition, and> C V a set of variables. We define

[t]o :={p | dom(p) = vars(t) andpu(t) € D}
[Q1 AND Q2]p :=[Q1]p X [Q2]p
[Q1OPTQ2]p :=[Q1]p M [Q2]D
[[Ql UNION QQHD = [[QlﬂD U HQQHD

[Q FLTER R]p :=0r([Q]p)
[SELECTS (Q)]p =7s([Q]p)
[AsK(Q)]n ==(0=[Q]p) =

ExAamMPLE 2. Consider the SPARQLERECT query

Q1:= SELECT2p,2¢(((?p, age, ?a) OPT (?p, email, ?e))
FILTER (?a = “30"))

which retrieves alB0-year-old persons?) and, optionally (i.e.,
if available), their email addres8d). Further assume that the data-
baseD := {(P1,age “30"), (P2, age,“29"), (P3, age “30"),
(P3, email, “joe@tld.com”)} is given. It is easily verified that
[Qi]p = {{?p+— P1},{?p— P3 ?e— “joe@tld.com”}}. O

From Set to Bag Semantics. We next consider the correspond- smaller fragments causing NP-hardness (respaARS&hardness)
ing bag semantics, obtained from the set semantics when interpretthan those listed in Theorem 1(2) (resp. Theorem 1(3)). Further,
ing mappings sets as bags of mappings. The bag semantics thuprojection (in form of £LECT clauses) was not investigated in [26].
differs in that mappings can appear multiple times in the evalua- Set vs. Bag Semantics. The previous definition of the\BALUA -
tion result. Formally, we define the bag semantics using mapping TION problem relies on set semantics for query evaluation. Our first
multi-sets, which associate a multiplicity with each mapping: task is to show that all complexity results obtained for set semantics
immediately carry over to bag semantics. We consider the associ-
DEFINITION 5 (MAPPING MULTI-SET). Amapping multi-set ated evaluation problem for bag semantics, denoted \oy. & -

is a tuple (2,m), where2 is a mapping set anch : M — No is a TioNT: given a mapping:, documentD, and SPARQL expression
total function s.tm(u™) > 1forall u € Q andm(u~) = 0 for or queryQ as input: letf[Q]}, := (2, m), isu € Q7 The fol-

all i~ ¢ Q. Givenp™ € Q, we refer tom(p ™) as themultiplicity lowing Lemma shows that the bag semantics differs from the set
of u* in Q and say that™ occursm(u™) times in€2. o semantics at most in the multiplicity associated to each mapping:

We can easily formalize the bag semantics using an adapted ver-
sions of the algebraic operations from Definition 3 that operate on
top of multi-sets and take the multiplicity of the set elements into
account. To give an example, the union operation over multi-sets,
(Qu,my) U (Qr, m,), yields the multi-se{(Q; U Q,.,m), where . .
m(p) = mi(p) + me(u) for all p € M. We call this algebra It fpllows easily as a corolle}ry that the set apd bag semantics do
over multi-setsSPARQL bag algebraGiven the SPARQL bag al- not differ w.r.t. to the complexity of the evaluation problem:
gebra, we immediately obtain the bag semantics for SPARQL when
modifying the first rule in Definition 4 (the triple pattern case) such ~ COROLLARY 1. Letn be a mappingD an RDF document,
that it returns a multi-set instead of a set. We use fundfipp to and@ be an expression or query. TheRAELUATION (u, D, Q) <
denote the mapping multi-set obtained when evaluating a SPARQL EVALUATION (1, D, Q). o
expression or query according to the bag semantics. The interested
will find a proper formalization in Appendix A.2. This result allows us to use the simpler set semantics for our

study of SPARQL complexity, while all results carry over to bag

EXAMPLE 3. LetQ := (7, ¢, c) UNION (c, ¢, ?z), document semantics (and therefore apply to the SPARQL W3C standard).

D = {(c,c,c)}, andu := {?z — c}. Then[Q]5 = ({u},m)
wherem(y) := 2 andm(p’) := O forall p// € M\ {u}. O 3.1 OPT-free Expressions

Our first goal is to establish a more precise characterization of
the UNION operator, to improve the understanding of the operator
and its relation to others beyond the known NP-completeness result
for class AFU. The following theorem gives the results for all
OpT-free fragments that are not covered by Theorem 1.

LEMMA 1. Let @Q be a SPARQL query or expressioh, be
an RDF database, and be a mapping. Lef2 := [Q]p and
QY m™) = [Q]5 Thenu € Q < pe Q.]

If Qis a mapping set and?’, m’) a mapping multi-set such that
Q= Q" andm(y') = 1forall u/ € ', we say thaf2 equals to
(€', m’) and denote this b@ = (Q', m’). Going one step further,
given a SPARQL query or expressighwe say that théag and set
semantics coincide fa® iff it holds that[Q] p = [Q]} for every
RDF documentD. In general, the two semantics do not coincide,

as witnessed by the previous example (observertat) > 1). THEOREM 2. The B/ALUATION problem is (1) in PTME for

classed/ andFU{, and (2) NP-complete for claséi/.]

3. COMPLEXITY OF SPARQL Proof Sketch. We sketch the NP-hardness part of claim (2), the

We introduce the SPARQL operator shortcts= AND, 7 := remaining parts can be found in Appendix B.2. To prove hardness,
FILTER, O := OPT, and!/ := UNION and denote the class of \ye reduce the STCOVER problem to the EALUATION problem
SPARQL expressions that can be constructed using a set of operafor classAz/. SETCOVER is known to be NP-complete, so the re-
tors (plus triple patterns) by concatenating the respective shortcuts.qyction gives us the desired hardness result. TRECBVER prob-

For instance, classl/ comprises all SPARQL expressions built |em is defined as follows. Let := {us,...,us} be a universe,
using only AVD, UNION, and triple patterns. BY := AFOU we Si,...S. C U be sets ovet/, and letl be positive integer: is there
denote the full class of SPARQL expressions (cf. Definition 1). We g set/ C {1,...,n} of size|I|< I such thatJ,., Si = U?
will use the termglassandfragmentinterchangeably. We use the fixed databage:= {(c, ¢, ¢)} for our encoding and
We follow the approach from [26] and take the complexity of represent each s&t := {x1, 22, ..., 2} by a SPARQL expres-
the EVALUATION problem as a reference: given a mappjnga sion Ps, := (c,c,?X1) AND ... AND (¢, ¢, ?X,,). Next, to en-
documentD, and a SPARQL expression or quégyas input: is code the sef := {Si,...,5,} of all S; we define the expression
e [[Q]],?? The next theorem summarizes re_sults on the_ combined p, .— Ps, UNION ... UNION Ps,, . Finally we define expression
complexity of SPARQL from [26], rephrased in our notatfon. P := Ps AND ... AND Ps, wherePs appears exactlytimes.

The intuition of the encoding is as follow#s encodes all sub-
setsS;. A set element, say, is represented by the presence of
a binding from variable’ X to valuec. The idea is that the en-
coding P allows us to “merge” (at most) arbitrary setsS;. It is
straightforward to show that thee3CoVER problem is true if and

The theorem (and hence, the study in [26]) leaves several quesONW if 1 := {7U1 = ¢,.... ?Uk = ¢} € [P]p, i.e. if the com-
tions unanswered. In particular, it is not clear whether there are PI€t€ universé/ can be obtained by merging these ssts.

THEOREM 1. (see [26]) The EALUATION problem is (1) in
PTIME for classAF (membership in PIME for classesd and F
follows immediately), (2) NP-complete for fragmestFi{, and
(3) PSPAacEe-complete for classedOU, AFO, and€.]

2[26] contains some more complexity results for the class of so- *An alternative version of the evaluation problem under bag se-
called well designed graph patterns, obtained from a syntactic re- mantics encountered in literature is to ask whethee Q and
striction for SPARQL expressions, which we do not repeat here. m(u) = ¢ for somec. Here, we disregard the multiplicity of.

3.2 Complexity of Expressionsincluding OPT

We next investigate the complexity of operatopCand its in-
teraction with other operators beyond theFRSE-completeness
results forAOU, AFO, and€ stated in Theorem 1(3). The fol-
lowing theorem refines the three previously mentioned results.

THEOREM 3. EVALUATION is PSAcCE-complete forAO. O

Proof Sketch. We reduce QBF, the validity problem for a quanti-
fied boolean formule := Va1 3y1 Vo Jys . . . Vo, Jym), wherey
is a quantifier-free formula in CNF, to thevELUATION problem
for fragment4O. The reduction divides into (i) the encoding of the
inner formulay and (ii) the encoding of the surrounding quantifier-

the previous reduction from QBF to fragme#A® is not fixed, but
depends on the input formula. It is an open question whether the
P SpAcE-hardness result falO carries over to expression com-
plexity (i.e., the evaluation complexity when fixing the database).

So far, tight bounds for fragmei@® are still missing. The next
theorem gives the central result of our complexity study:

THEOREM 4. EVALUATION is PSPACE-complete forO. O

Analogously to Theorem 3, the result follows from an encoding
of quantified boolean formulas, now using only operatermrOrhe
intuition behind this high complexity is thax, the algebraic coun-
terpart of QpT, is defined usingg, U, \; the mix of these operations

sequence. Part (i) has been presented in [24], so we discuss only(in particular the negation operatgy makes evaluation hard. We
part (|) here. We illustrate the idea of the encoding by examp|e' COnCIUde thIS Subsect|0n W|th a COI’O||ary Of Theorems 1(3) and 4:

showing how to encode the quantifier-free boolean CNF formula
= C1 A Co with Cq := (21 V —y1) andCs := (-1 V y1) US-

ing only operators ®T and AND (the technical proof can be found

in Appendix B.3). For this formula, we set up the database

D :={(a,tv,0), (a,tv, 1), (a, false 0), (a, true, 1),
(a7 Uar17x1)7 (a7 varl?yl)? (a7 var27x1)7 (a7 varQ?yl)?
(a,$1,11), (aa yl:yl)}v

where the first four tuples are fixed, the next four tuples encode
the variables that appear in the clausesg/ofe.g., (a,vari, z1)
means that variable; appears in claus€’;), and the final two
tuples stand for the two variables that appeaypinMe then define
Py := Pc, AND Pc,, where

Pc,:=((a,vary, ?vary)
OPT ((a, x1, Tvar1) AND (a, true, 7X1)))
OPT ((a, y1, ?var1) AND (a, false,?Y1)), and
Pc,:=((a,varz, Tvarsy)
OPT ((a, y1, Tvarz) AND (a, true, 7Y1)))
OPT ((a, 1, Tvars) AND (a, false, ?X1)).

In these expression, variabléX, 7Y; stand for the respective
variablesry, y1 in ¢, and a binding X; — 1 encodes; = true.
The intuition behindPc, and Pc, is best seen when evaluating
them on the input databage. For instance, foP-, we have

[Pc,1p = ({{7var1 — 1}, {?vary — y1}}
™ {{?vary — z1,?7X71 — 1}})
X {{?var1 — y1,?Y1 — 0}}
= {{?var1 — z1,?7X1 — 1}, {vary — y1}}
™ {{?vary — y1,?Y7 — 0}}
= {{?var1 — z1,?7X1 — 1}, {?var1 — y1,?Y1 — 0}}.

We observe that the subexpress@n= (a, vari, Tvari) with
Qlp = {{?var1 — x1},{?var; — y1}} sets up one map-
ping for each variable i’;. When computing the left outer join
of [Q]p with {{?var1 — x1,7X1 — 1}}, the first mapping
in [Q] b is extended by binding X, — 1 and the second one is
kept unmodified; in the next step, the second mapping ff@hn

is extended instead. The final result contains two mappings, which

reflect exactly the satisfying truth assignmentsdar it evaluates
to true if z; is true (binding? X; — 1 in the first mapping) or ifj1
is false (Y1 — 0 in the second mapping). Itis easily verified that

[Pylp = {{?var1 — x1,7var — y1,?X1 — 1,7Y1 — 1},
{?vari — y1, Tvars — x1,?7X1 — 0,7Y7 — 0}},

which represents exactly the two satisfying truth assignments for

formulavy,i.e.?X; — 1,7Y7 — land?X; — 0, 7Y; — 0.0

Note that, in contrast to the P&CE-hardness proofs falOU,
AFO, and€ in [26] (cf. Theorem 1(3) above), the database used in

COROLLARY 2. The B/ALUATION problem for every expres-
sion fragment involving operator € is PSPACE-complete. O

3.3 The Source of Complexity

The proofs of Theorems 3 and 4 both rely on a nesting ef O
expression that increases with the number of quantifier alternations
encountered in the encoded quantified formula. When fixing the
nesting depth of ®T expressions, lower complexity bounds in the
polynomial hierarchy [33] can be derived. We denoterliyk (Q)
the maximal nesting depth of @@ expressions i), where QrT-
free expressions have rank zero (see Appendix A.4 for a formal
definition). Given a fragmenk’, we denote byF<,, the class of
expressiong) € F with rank(Q) < n. Then:

THEOREM 5. For everyn € Ny, the EVALUATION problem is
P, -complete for the SPARQL fragmeéit,,. O

Observe that the WLUATION problem for class <o is com-
plete for>F=NP, which coincides with the result for/-free ex-
pressions (i.e., clasd FU/) stated in Theorem 1. With increasing
nesting-depth of ®T expressions we climb up the polynomial hi-
erarchy. The proof in Appendix B.5 relies on a version of the QBF
problem with fixed quantifier alternations, in which the number of
alternations fixes the complexity class in the polynomial hierarchy.

3.4 From Expressionsto Queries

We conclude the complexity study with a discussion of SPARQL
queries, i.e. fragments involving projection in the form ofeL8CT
operator (see Definition 2). We extend the notation for classes. For
some expression clags, we denote byF'™ the class of queries
SELECTs(Q), whereS C V is afinite set of variables ar@ € F'.

Itis easily shown that projection comes for free in fragments that
are at least NP-hard. Based on this observation and an additional
study of the remaining query fragments (i.e., those withNRET
complexity), we obtain the following complete classification:

THEOREM 6. EVALUATION is (1) PSace-complete for all
query fragments involving operatorr®, (2) 3%, ;-complete for
fragmenteZ,, (for n € Np), (3) NP-complete for ™, AF™, AU,
and AFU™, and (4) in PTME for classesF™, U™, andFU™. O

3.5 Summary of Results

We summarize the complexity results in Figure 1. All fragments
that fallinto NP, , and P®acEalso are complete for the respec-
tive complexity class. As an extension of previous results, the fig-
ure shows that eaczﬁ,’fﬂ also contains the fragmest7O«,, and
the corresponding query fragmedt7OZ,,. These results were

0, A0, F0O, ..., AFOU,
o7, AO™, FO™, ..., AFOUT

PTime

A, FU,AF, FU,

Figure 1. Summary of Complexity Results

not explicitly stated before, but follow directly from the proof of
Theorem 5 for clas§Z,, (cf. Appendix B.5), which does not use
the UNION operator in its encoding. Observe that the categoriza-
tion is complete w.r.t. all possible expression and query fragments.

4. ALGEBRAIC SPARQL OPTIMIZATION

Having established the theoretical background, we now turn to-
wards algebraic optimization. We start with two functions that stat-
ically classify the variables that appear in some SPARQL algebra
expressiomd. The first onegVars(A), estimates theertain vari-
ablesof A and fixes a lower bound for variables that are bound
in every result mapping obtained when evaluatihgThe second
one, pVars(A), gives an upper bound for the so-callpdssible
variablesof A, an overestimation for the set of variables that might
be bound in result mapping. Both functions are independent from
the input document and can be computed efficiently. They account
for the specifics of SPARQL, where variables occurring in the ex-

PROPOSITION 1. LetA be a set algebra expression andlet
denote the mapping set obtained when evaluatingn any docu-
mentD. Then?z € cVars(A) — Vu € Qa : 7z € dom(p). O

The definition of functiorp Vars(A) is similar (see Definition 17
in Appendix A.5). It is simply obtained from the definition of
c¢Vars(A) by replacing in the right side of the rules fad; U As
by U, because both the variables frafn and A> may appear in
result mappings. Possible variables exhibit the following property.

PROPOSITION 2. Let A be a set algebra expression andlet
denote the mapping set obtained when evaluatiron any docu-
mentD. Thenforally € Q4 : 7z € domp) —7z € pVargA).O

We note that both Proposition 1 and 2 naturally carry over to bag
semantics and complement the previous discussion with an exam-
ple that illustrates the definition efVars(A) andp Vars(A):

ExAamMPLE 4. Consider the SPARQL set algebra expression

A = w0y ([0, 20)]0 ¥ [(@ 7, 72)]0) U [(a,p, 22)]).
We have thap Vars(A) = {?z, 7y} andcVars(A) = {?z}. O

Outline and Related Work. In the remainder of this section
we present a set of algebraic equivalences for SPARQL algebra,
covering all the algebraic operators introduced in Definition 3. In
query optimization, such equivalences are typically interpreted as
rewriting rules and therefore we shall use the teegsivalence
and(rewriting) rule interchangeably in the following. We will first
study rewriting rules for SPARQL set algebra in Section 4.1, see
what changes when switching to bag algebra in Section 4.2, and
discuss practical implications and extensions in Section 4.3.

In the interest of a complete survey, we include equivalences that
have been stated before in [24]. Among the equivalences in Fig-
ure 2, a majority of the rules from groupsandl | , as well as
(FDecompl+ll), (MJ), and(FUPush)are borrowed from [24]. Fur-

ther, rules(J1dem), (FJPush) and(L.J) generalize Lemma (2),
Lemma 1(2), and Lemma 3(3) from [24], respectively. These gen-
eralizations rely on the novel notion of incompatibility property
(which will be introduced in Section 4.1) and extend the applica-
bility of the original rules. We emphasize that almost three-fourths
of the rules presented in this section are new. In the subsequent
discussion we put a strong focus on these newly-discovered rules.

pression may be unbound in result mappings, and take a centralrole4.1 Rewr iti ng under Set Semantics

in subsequent investigations. We start with the certain variables:

DEFINITION 6 (FUNCTION cVarg). Let A be a SPARQL set
algebra expression. FunctiefVars(A) extracts the set of so-called
certain variablesand is recursively defined as

cVars([t]p) :=wvars(t)

cVars(Ay M Ag) :=cVars(A1) U cVars(Asz)

cVars(Ay U Ag) = cVars(A1) N c¢Vars(Asz)

cVars(Ar \ A2) :=cVars(A1)

cVars(ns(Ar)) =cVars(A;)NS

cVars(or(Ar)) =cVars(A;) O

Observe that the casé; 4 A, is not explicitly listed, but fol-
lows by the semantics of operatdf, i.e. we can rewrited; X A,
into (A1 X As) U (41 \ A2) and apply the rules fox, U, and\
to the rewritten expression. Also note that the function is defined
for set algebra, as witnessed by rul€ars([t]p) := vars(t). We
can easily transfer the function to bag algebra by replacing this rule
throughe Vars([t] 1) := vars(t) and therefore shall also use it for
bag algebra expressions. The key property of certain variables is:

We investigate two fragments of SPARQL set algebra. The first
one, calledfragmentA, comprises the full class of SPARQL set
algebra expressions, i.e. expressions built using, \, X, «, o,
and triple patterns of the forift] p. We understand a set algebra
expressionA € A as a purely syntactic entity. Yet, according to
the SPARQL set semantics (cf. Definition 4) each set algebra ex-
pressionA implicitly defines a mapping set if documehtis fixed.
Therefore, we refer to the mapping set obtained by application of
the semantics as ttike result of evaluating!l on documenD.

In addition to the full fragment of set algebra expressidnsve
introduce a subfragmelzﬁ C A that has a special property, called
incompatibility property. As we shall see later, expressions that
satisfy the incompatibility property exhibit some rewritings that do
not hold in the general case and therefore are of particular interest.

DEFINITION 7 (INCOMPATIBILITY PROPERTY). A SPARQL
set algebra expressiohhas thancompatibility propertyif, for ev-
ery documentD and each two distinct mappings # po con-
tained in the result of evaluating on D, it holds thatu, % pe. O

DEFINITION 8 (FRAGMENT A); We define class. C Are-
cursively as follows. An expressiofi € A is contained imA iff

e A:=[t]p is atriple pattern,

o A:= A; M Ay, whereA; and A, areA expressions,

o A=A \ Ay, whereA; and A, are A expressions,

o A:— A~1 X ;1; where;ﬁ and?ﬁ areA expressions,

o A:— aR(;ﬁ), whereR is a filter condition andffl S A,
o A:=1g (le), whereS is a set of variables:elvl € A, and

SD2 pVars(;lvl) orS C cVars(le), or
A := A, U A,, whereA; A, areA expressions and

pVars(E):cVars(;ﬂ):pVars(;{\;):cVars(;l;). O

LEMMA 2. EveryA € A has the incompatibility propertyc

The following example illustrates that expressions outside frag-
mentA generally do not exhibit the incompatibility property:

ExampLE 5. LetD := {(0,f,0),(1,¢,1),(a,v,0),(a,v,1)}
be an RDF database, and := [(0,f,7z)]p U [(1,¢,?y)]b,
Az 1= 0,2, (([(a, v, 72)]p X [(?2,F, 72)[p) M [(?2, £, 7)]p)
be set algebra expressions. When evaluatingand A, on D we
obtain the mapping sé = {{?z — 0}, {?y — 1}} for both ex-
pressions. Obviously, the two mappingd<irare compatible. Note
that neither4; nor A, are A expressions. As a positive example,
observe thatts := 77, ([(a, 22, 7y)] o U [(b, 72, ?y)]p) € A.O

Algebraic Laws. We start our investigation of SPARQL set al-
gebra equivalences with some basic rules that hold with respect to
common algebraic laws in groupsandl | in Figure 2, whereA
stands for amd expression andl represents an expression. Fol-
lowing common notation, we writel = B if SPARQL algebra
expressiond is equivalent toB on every documenD. As a no-
tational convention, we distinguish equivalences m/\t/specifically
hold for fragment& by a tilde symbol, e.g. writing.J/dem) for
the idempotence of the join operator over expressions in dass

Most interesting in group are rules(JIdem) and (LIdem),

established for fragmeni\.. In fact, these rules do not generally
hold for expressions that violate the incompatibility property. To

all variables inS' that do not belong te Vars(A) can be dropped
when projectingS. The main benefit of these two rules stems
from a combination with the other equivalences from group ,
which may introduce such redundant variables within the rewriting
process (cf. Example 6 below). The remaining six rules address
the issue of pushing down projection expressions. Equivalence
(PFPush)covers projection pushing into filter expressions, while
(PMerge)shows that nested projection expression can be merged
into a single projection. The four rules for the binary operations
build upon the notion of possible variables. To give an example,
rule (PJPush)relies on the observation that, when pushing projec-
tions inside join subexpressions, we must keep variables that may
occur in both subexpressions, because such variables may aéfect th
result of the join (as they might cause incompatibility). Therefore,
we defineS’ := SUS"” = SU (pVars(A1) N pVars(Az)) as an
extension ofS and project the variables i\’ in the two subexpres-
sions.(PMPush)and(PLPush)exhibit similar ideas. Note that we
generally cannot eliminate the topmost projection, becalse S.

ExXAmMPLE 6. Using rules(PBasel) (PBasell) and (PJPush)
we can easily prove that expressidss and B> below, which se-
lect all persons that know at least one other person, are equivalent:

By := maperson?namd T2person?namd [(?personname ?namg] p) X
Taperson?namd [[(?personknows ?person?] p))
B .= [(?personname ?nameé] p X
mapersod [(?personknows ?person?] p)

One may expect thﬂ‘fpt is more efficient tharB, on databases

containing manyknowsrelationships, where the early projection
removes duplicates and accelerates the join operation. O

Filter Manipulation. Groupsl VandV in Figure 2 contain rules
to decompose, eliminate, and rearrange filter conditions. They form
the basis for transferring relational algebra filter pushing techniques
into the context of SPARQL. We emphasize, though, that these
rules are more than simple translations of existing relational algebra
equivalences: firstly, they rely on the SPARQL-specific concepts
of possible and certain variables and, secondly, address specifics of
SPARQL algebra, such as predicatal (cf. (FBndl)-(FBndIV)).

The first three equivalences in groliyY cover decomposition
and reordering of filter conditions, exploiting connections between
SPARQL operators and the boolean connectivesidV. The sub-

give a concrete counterexample, substitute for instance expressiorsequent four rule@=Bndl)-(FBndIV)are SPARQL-specific and ad-

Aj (or Az) from Example 5 forA in either(JIdem) or (LIdem).

The rules for associativity, commutativity, and distributivity in
groupl | speak for themselves. An outstanding question is whether
they are complete w.r.t. all possible operator combinations. The
lemma below rules out all combinations that are not explicitly stated:

LEMMA 3. LetO; := {,\, X} andO2 := O, U{U} be sets
of operators. Then (1) operatoysand X are neither associative
nor commutative; (2) neithérnor X are left-distributive oveu;
() if 01 € O1, 02 € Oz, ando; # o2, then operatoo is neither
left- nor right-distributive over operater; . m|

Projection Pushing. Next, we shortly discuss the rules for pro-
jection pushing in group | | of Figure 2. These rules are moti-
vated by the desideratum that a good optimization scheme should
include the possibility to choose among evaluation plans where pro-
jection is applied at different positions in the operator tree.

The first two rules in group | | , (PBasel)and (PBasell) are
general-purpose rewritings for projection expressioiBBasel)
shows that, when projecting a variable set that contains all possible
variables (and possibly some additional variali¢sthe projection
can be droppedPBasell)complementg§PBasel)by showing that

dress the predicatend They reflect the intuition behind the con-
cepts of possible and certain variables. To give an example, precon-
dition 7z € c¢Vars(A1) in rule (Bndl) implies that?xz is bound in
each result mapping (by Proposition 1), so the filter can be dropped.
Finally, the rules in grouly cover the issue of filter pushing. Par-
ticularly interesting ar¢dFJPush)and (FLPush) which crucially
rely on the notions of possible and certain variables: the filter can
be pushed inside the first component of a jein X A, (or left
outer joinA; ¥ A») if each variable used inside the filter is a cer-
tain variable ofA; (i.e., bound in every left side mapping) or is not
a possible variable ol (i.e., not bound in any right side mapping).
This ultimately guarantees that the join (respectively left outer join)
does not affect the validity of the filter condition. In general, the
equivalences do not hold if this precondition is violated:

EXAMPLE 7. Considerthe SPARQL algebra expressidns=
[Pz, e,e)]p MK [(?z, d, ?y)]| b, A2 := [(?y, ¢, ¢)] o and the doc-
umentD := {(c,c,c)}. We observe thaty ¢ cVars(A;) and
7y € pVars(As2), so neither(FJPush)nor (FLPush)are applica-
ble. Indeed, we have that,—.(A1 X Az) andory—c(A1 X As)
evaluate to{{?z — ¢, 7y — c}} on D, whereasrsy—. (A1) X A,
andozy—.(A1) X A, both evaluate t@. O

I. Idenpotence and I|nverse I'V. Filter Deconposition and Elimnation
AUA =A (L&d\e_rﬂ) ORy ARy (A) = oR, (0Rr,(A)) (FDecompl)
ANA=A (JIdem) OR VR, (A) = o, (A)Uog,(A) (FDecompll)
iwioi (CTdem) or, (75, (A) = om, (o, () (FReord)
A\A =0 (|nv) Jb7Ld(?z)(A) = A, if7x e cVars(A) (FBndI)

Tpnd(22)(A) =0, if 7z &€ pVars(A) (FBndll)

I'l. Associativity, Commutativity, Distributivity O bnd(72)(A) =0, if 7z € cVars(A) (FBndlll)
(Al U A2) U AS EAl U (A2 U AS) (UASS) O'_‘b”d(?z) (A) = A, if 7z € pVa’r‘s(A) (FBndIV)
(A1 X AQ) X Az3= A1 X (A2 X Ag) (JAss) V. Filt Pushi
A1 U As =AU Aq (UComm) ' ! er ushing
Ay X Ag = Ay X Ay (3Comm) UR(ﬁl UAA2) = UR(ﬁl) UZR(AQ) (Ew;us?])

= s
(A1 U Ag) M A = (A; X A3) U (Az M A3) (JUDIstR) or(A1\ 42) or(A1)\ Az (FMPush)
Ay X (A2 U A3) = (A1 X Ag) U (A X Az) (JUDistL) Ifforall 7z € vars(R) : 7z € cVars(Ay) V 7z Vars(As), then
(A1 UAs)\ A3 = (A1 \ A3) U (A2 \ A3) (MUDIStR) (_) (A1) # pVars(Az),
(A1 UAg) X Az=(A; N A3) U (A2 X A3) (LUDIStR) or(A1 M Ag) = op(A1) M Ay (FIPush)
O'R(Al N AQ) = O'R(Al) N Ao (FLPUSh)

I1l. Projection Pushing _ o
Tpvars(ayus(4) = A (PBasel) VI. Mnus and Left Quter Join Rewriting
Ws(A) = TSAp Vars(A) (A) (PBaseII) (A1 \ AQ) \ A3 = (A1 \ A3) \ Ag (MREOI’d)
ms(or(A)) =75(0R(TsUvars(r)(A))) (PFPush) (A1\ A2)\ Az = A1\ (A2 U A3) (MMUCorr)
TS, (71’32 (A)) =TS1NSs (A) (PMerge) :4\1 \ A,-%_, = A1 \ (A,llel AE) (M\:])

A1 X Ay = Al ™ (A1 X AQ) (LJ)
LetS” := pVars(A1) N pVars(Az) andS’ := S U S”. Then
75(A1 UAg) =mg(A1) Umg(Az) (PUPush) Let?z € V such thatz € cVars(Az2) \ pVars)(Ai1). Then
mg(AL M Ag) =mg(msr (A1) Mg/ (Az)) (PIPush) Obma(7e) (A1 M Ag) = Ay \ Ay (FLBndI)
ms(A1\ A2) =ms(ms (A1) \msr(A2)) (PMPush) Tpnd(7a) (A1 X A2) = A1 M Ay (FLBndII)
7r5(A1 N A2) = WS(T"S’(Al) i WS/(AQ)) (PLPush)

Figure 2: Algebraic Equivalences, where A, A1, Ay, As € A, Ac A; S,51,S52 C V; R, R1, Ry Denote Filter Conditions

We conclude our discussion of filter manipulation with two ad- which extracts person®() with givenname ?gn) “Sue”, sur-
ditional rules to make atomic equalities in filter conditions explicit: name @sn different from“Smith”, and optionally their email?g).
Itis left as an exercise to the reader to verify that, using rules from
LEMMA 4. Let A be a SPARQL set algebra expression built groupsl - Vin Figure 2, the expression can be transformed into
using only operator$d, U, and triple patterns of the forrft]p.

Further let’z, 7y € cVars(A). By Az y we denote the expression Top,7e ((02snzesmit ([(?P, surname?sn)] p)
obtained fromA by replacing all occurrences 6f: in A by ?y; X [(?p, givenname“Sue”)| p X [(?p, rdf:type Person]p
similarly, A-% is obtained fromA by replacing?x by URI or lit-) ™M [(?p, email ?€)]p)

eralc. Then the following two equivalences hold.
We may assume that the latter expression can be evaluated more

(FElimI) Ts\(72} (0r0=7y (A)) = s\ (22} (AZL) efficiently than the original expression, because both filters are ap-
(FElimlI) T\ {72} (Or2=c(A)) =Ts\703(A55) O plied early; the atomic filter conditiofyn = “Sue” has been em-
bedded into the triple patteffii?p, givenname?gn)] p. |

(FEliml) and (FElimIl) allow to eliminate atomic filter condi-

tions of the form?x =?y and?x = ¢, by replacing all occurrences The example illustrates that the rewriting rules provided so far
of ?z in the inner expression byy andc, respectively. Observe establish a powerful framework for finding alternate query evalua-
that in both equivalences the filter expression must be embedded intion plans. It should be clear that further techniques like heuristics,

a projection expressions that projects variablessef{ 7z}, i.e. not statistics about the data, knowledge about data access paths, and
including variable?x that is to be replaced (otherwisgy might cost estimation functions are necessary to implement an efficient
appear in left side result mappings but not in right side mappings). and comprehensive optimizer on top of these rules, just like it is
Given our complete rewriting framework, this is not a major re- the case in the context of relational algebra (see e.g. [31]). The

striction: using the projection pushing rules from grdupl , we study of such techniques is beyond the scope of this work.
can push projections down on top of filter expressions and subse- Rewriting Closed World Negation. We conclude the discus-
quently check if rulg€FEIliml) or (FElimll) applies. sion of SPARQL set algebra optimization with an investigation of

We conclude our discussion of filter manipulation with an exam- operator\. First recall that an expressiofy \ A- retains exactly
ple that illustrates the filter manipulation rules and their possible those mappings from; for which no compatible mapping id

interplay with the previous rules from groupsd | | in Figure 2: exists (cf. Definition 3), so the minus operator essentially imple-
ments closed world negation. In contrast to the other algebraic op-
ExampLE 8. Consider the SPARQL algebra expression erations, operatoy has no direct counterpart at the syntactic level,
but — in SPARQL syntax — is only implicit by the semantics of op-
T2p,7e (O2sn smith” A2gn="sue" (erator QpT (i.e., OPT is mapped intoX and the definition of1x
([(?p, givenname?gn)| p ™ relies on operatoy). As argued in [1], the lack of a syntactic coun-
[(?p, surname?sn]p X [(?p, rdf:type Person]p) terpart complicates the encoding of queries involving negation and,

X [(?p,email ?¢)]p)) as we shall see soon, poses specific challenges to query optimizers.

We also stress that, as discussed in Section 3.2, it is mainly the Given a set algebra equivalentg), we say that(£') carries
operator\ that is responsible for the high complexity of the (syn- over from set to bag algebiieither (F) was specified for expres-
tactic) operator ®T. Therefore, at the algebraic level special care sionsA, A1, As, A3 € A and it also holds for all bag algebra ex-
should be taken in optimizing expressions involving/Ve start our pressmnsA Al, Ao, Az € AT or (E) is specified for expressnons

discussion with the observation from [1] that operat@an be en- from fragmentA and also holds for expressions frofnt .

coded at the syntactic level using operatorsTOFILTER, and (the

negated) filter predicatend The following example illustrates the ExampLE 10. EquivalencgUldem) from Figure 2 does not
idea behind the encoding of negation in SPARQL. carry over to bag algebra. To see why, consifler= {(c,c,c)}

) andA := [(c, ¢, 7z)]|p € A*. The result of evaluatingl on D is
ExAamMPLE 9. The SPARQL expressiap; and the correspond- ({{?z — c}},m) with m({?z — c}) := 1, but A U A evaluates
ing algebra expressiofi; := [Q1]p below select all persons for to ({{?z — c}},m") with m/({?z — c}) := 2. 0O

which no name is specified in the data set.)))))
To keep the discussion short, we will not go to deep into detalil,

Q1 == ((?p, type, Person) OPT but only present the final outcome of our investigation.
((?p, type, Person) AND (?p, name, ?n))) FILTER (—bnd(?n))

C1 = o pma(om) ([(?p, type, Person)] p THEOREM 7. All equivalences from Figure 2 excefifidem)
([(?p, type, Person)]p X [(?p, name, ?n)]p)) 0O and(FDecompll)carry over to bag algebra. Further, ru{€&liml)
and(FElimll) from Lemma 4 carry over to bag algebra.]

From an optimization point of view it would be desirable to have
a clean translation of the operator constellation in qu@ryusing 4.3 Extensionsand Practical Implications
only operatol, but the semantics mag: into C4, which involves We conclude with a discussion of implications for SPARQL en-
a comparably complex construction using operatqr3<, X, and gines that build upon the official W3C (bag) semantics. To this
predicatebnd (thus using operatox implicitly, according to the end, we switch from the algebraic level back to the syntax level
semantics ofX). This translation seems overly complicated and and discuss conclusion we can draw for engines that follow the bag
we will now show that better translations exist for a large class of semantics approach. We start with a result axAjueries:
practical queries, using only, without X, o and predicaténd

We argue that the rewriting rules in Figure 2, grodip can ac-
complish such a rewriting in many practical cases. Most impor-
tant in our context are rul@..J), which allows to eliminate redun-
dant s~ubexpressions in the right sideXf expressions (over frag- [Ask(Q1 OPTQ2)]p < [ASK(Q1)]p
mentA), and rule(FLBndI). The idea is as follows. In a first step, If pVars([Q1]p) N pVars([Q2]p) = 0 then
we apply rule(L.J) to C; from Example 9, which gives us expres- [Ask(Q1 AND Q2)]p < [ASK(Q1)]p A [ASK(Q2)]p. E
SIONCY := o pna(zn) ([(?p, type, Person)] p ™ [(?p, name, 7n)]p).
In a second step, we apply r(lELBndl) to expressior; and ob-
tain C™ := [(?p, type, Person)|p \ [(?p, name, 7n)] p.

The construction iy, involving operatorsiX, X, o, and pred-
icatebnd, has been replaced by a simple minus expressicifth

LEMMA 6. Let@, Q1, Q2 be SPARQL expressions. Then
[AsK(@)]p + [ASK(@Q)]]
[Ask(Q1 UNION Q2)[p < [AsK(Q1)]p V [ASK(Q2)]p

The first bullet states that for x queries the set and bag se-
mantics coincide. The remaining three rewritings are optimiza-
tion rules, designed to reduce evaluation costs feK Ajueries.

For instance, the rule for operator@shows that top-level ©r-
expressions can simply be replaced by the left side expression, thus

4.2 From Set to Bag Semantics saving the cost for computing the right side expression.
We now switch from set to bag algebra. Analogously to our Like SQL, the SPARQL standard [32] proposes a set of solution

discussion of SPARQL set algebra, we define a fragment cAlfed modifiers. Our focus here is on the solution modifiens DNCT
that contains all bag algebra expressions. It differs from set agebr ahnd RED|UCED ThehD'ST'NfomOd'lf'er removes duplicates from
fragmentA. in that triple patterns are of the forf] ;; and therefore ¢ edresbu tset, i.e. the restL)J Lo vaa uatingLECT D'ST'NCTS(QQ
all operations are interpreted as operations over multi-sets. TheUnder bag semanticsis obtained frof m) := [SELECTs (Q)]},

i / 1 / - —
ultimate goal in our analysis is to identify those equivalences from by, replacingm by m defined asn’(u) := 1 for all € & and
Section 4.1 that hold for bag algebra expressions. m'(p) := 0 otherwise (DSTINCT and REDUCED queries make

We modify the definition of the incompatibility property (cf. Def- only Senhs,le under bag semantics, v_vhere duplicr?te gns:/_vers may oc-
inition 7) as follows for bag semantics. A bag algebra expresdion ~ ¢un- While SELECT DISTINCT queries ensure that duplicates are

has theincompatibility propertyif, for every documentD and re- eliminated, £LECT REDUCED queriespermitto eliminate them;
sult multi-set (2, m) obtained when evaluating on D it holds the idea is that optimizers can freely choose whether to eliminate

that (i) each two distinct mappings @p are incompatible and duplic_ates or not, based on their internal pr_ocessing strategy. We
(i) mp(u) = 1forall u € Qp. The constraint (i) arises from the deﬁg”be the re_sult Of'ﬁchT RED[.JCEune”eS a? the sﬁt 9(; all b
fact that duplicate mappings are always compatible to each otherValid answers, i.e. a set of mapping sets. We clarify the idea by
(i.e., ;1 ~ ;1) and may harm equivalences that — under set algebra — example here; the interested reader will find a formal definition of
hold for expressions that exhibit the incompatibility property. both DISTINCT and REDUCED queries in Appendix A.6.

It turns out that we also need to adjust the definition of the frag- ExampLe 11. LetQ := (22, ¢, ¢) UNION (c, ¢, 7z) and con-
ment that satisfies the incompatibility property. We define the bag gjger @, .= SELECT7,(Q), Q2 := SELECTDISTINCT?,(Q),

algebra class\+ (the natural counterpart of set algebra clds)s Qs := SELECT REDUCEDy,(Q), andD := {(c,c,c)}. Then
as the set of expressions built using operaters,, 24, o, and
(bracket-enclosed) triple patterns of the foftfi;. Then, in anal- [Q:]5 = ({{?z = c}},m1) where _
ogy to Lemma 2 for set semantics, we can show the following. m1({?z +— c}) := 2 andm. (u) := 0 otherwise,
_ Q215 = ({{?x = c}}, m2) where
LEMMA 5. EveryA+ € At has the incompatibility property. ma({?z — ¢}) := 1 andmg(u) := 0 otherwise,

[Qs]p = {({{?x — c}},m1), {7z — c}},ma)}. o

We next summarize relations between modifiers and semantics: that each resource that is typed withalso has the property.
When talking about constraints in the following, we always mean
RDF constraints that are expressed as first-order sentences.
Before presenting our SQO scheme for SPARQL, we shortly
investigate the general capabilities of SPARQL in the context of
RDF constraints. More precisely, we are interested in the question
whether the SPARQL query language can be used to express (i.e.,
check and encode) RDF constraints. An intuitive way to check if

The first bullet shows that the (bag) semantics Bf §&cT Dis- a constraintp holds on some RDF document is by writing asi

TINCT queries coincides with the set semantics for the correspond- GUery that returndgrue on documentD if and only if D |= .
ing SELECT query. Bullets two and three imply that set semantics 1© be in line with previous investigations on the expressiveness of
can also be used to evaluateL&CT REDUCED queries. SPARQL, we extend our fragment by so-called empty graph pat-

Summarizing all previous results, we observe that the (simpler) t€rns of the form{} (which may be used in place of triple pat-

set semantics is applicable in the context of a large class of queriest®™S), and a syntactic Mus operator; we define their semarltics
as[{}]p := {0} and[Q: MINUS Q2]p := [Q:]p \ [Qz2]p-

(i.e. all Ask, SELECTDISTINCT, and SLECT REDUCEDqueries).
Engines that rely on SPARQL bag algebra for query evaluation may EMPty graph patterns are supported by the current W3C standard
opt to implement a separate module for set semantics and switch@nd Operator Muus is planned as a future extensidrBoth con-
between these modules based on the results above. We conclud&tructs were also used in [1], where it is shown that SPARQL has
with a lemma that identifies another large class of queries that cantn€ Same expressiveness as Relational Algebra. Given the latter re-
be evaluated using set semantics in place of bag semantics: sult and the close connection between RA and first-order logic, one

may expect that (first-order logic) constraints can be expressed in
SPARQL. The next theorem confirms this expectation:

LEMMA 7. Let Q be a SPARQL expression afd= V. Then

o [SELECTs(Q)]p = [SELECT DISTINCTs(Q)]}
o [SELECTDISTINCTs(Q)]} € [SELECT REDUCEDs(Q)]}

e There is somg2,m) € [SELECT REDUCEDs(Q)]}, such
that[SELECTs(Q)]p = (2, m). O

LEMMA 8. Let@ € AFO and letS D pVars([Q]p)
[SELECTS(Q)]p = [SELECTS(Q)] 5.

5. SEMANTIC SPARQL OPTIMIZATION

We assume that the reader is familiar with the concepts of first- The constructive proof in Appendix D.1 shows how to encode
order logic, relational databases, and conjunctive queries. To beRDF constraints in SPARQL and makes the connection between
self-contained, we summarize the most important concepts below. SPARQL and first-order logic explicit. From a practical perspec-

Conjunctive Queries. A conjunctive query (CQ) is an expres- tive, the result shows that SPARQL is expressive enough to deal
sion of the formg : ans(Z) <« (T, y), wherey is a conjunction with first-order constraints and qualifies SPARQL for extensions to
of relational atomsz andy are tuples of variables and constants, encode user-defined constraints, e.g. in the style of SQEATE
and every variable ir also occurs inp. The semantics of on ASSERTIONstatements. In the remainder of the paper, we switch
database instandeis defined ag(/) := {a | I = 3yp(a,7) }. back to the original SPARQL fragment from Definitions 1 and 2.

Constraints. We specify constraints in form of first-order sen-
tences over relational predicates. As special cases, we consider th<.5-1 SQO for SPARQL
well-known classes of tuple-generating dependencies (TGDs) and The key idea of semantic query optimization is, given a query
equality-generating dependencies (EGDs) [2], which cover most and a set of integrity constraints, to find minimal (or more efficient)
practical relations between data entities, such as functional and in-queries that are equivalent to the original query on each database
clusion dependencies. Abstracting from details, TGDs and EGDs instance that satisfies the constraints. We define the problem for
have the formvVz (o () — 3y (z, 7)) andVz(p(T) — z; = z;), SPARQL as follows: given a SPARQL expression or qu@rand
respectively. Technical background can be found in Appendix A.3. a set of TGDs and EGDX over the RDF database, we want to

. Then
0O

THEOREM 8. Let p be an RDF constraint. There is arsA
query@ s.t. for every documer® it holds thaf| Q] p < D = ¢.O

Chase. We assume familiarity with the basics of the chase al-
gorithm (cf. [21, 2, 14]), a useful tool in semantic query optimiza-
tion [14, 8]. In the context of SQO, the chase takes ag&@Qd a set
of TGDs and EGDZ as input. It interprets the body of the query,

enumerate (minimal) expressions or querigshat are equivalent
to @ on every databasP such thatD = 3. In that case, we say
that@ andQ’ areX-equivalent and denote this I8y =x Q’.

The constraints that are given as input might have been specified

body(q), as database instance and successively fixes constraint vi-by the user, automatically extracted from the underlying database,

olations inbody(q). We denote the output obtained when chaging
with ¥ asq”. Itis known thatbody (¢%) = X and thay” is equiva-
lenttoq on every instanc® = X. Note thaiz™ may be undefined,
since the chase may fail or not terminate (see Appendix A.3). Still,

or — in our setting — may be implicitly given by the semantics of

RDFS when SPARQL is coupled with an RDFS inference system.
In fact, one aspect that served as a central motivation for the in-
vestigation of SQO for SPARQL is the close connection between

there has been work on chase termination conditions that guaranteeconstraints and the semantics of RDF and RDFS [29]. To be con-

its termination in many practical cases (e.g. [28, 7, 22]).

Our SQO scheme builds on the Chase & Backchase (C&B) al-
gorithm [8], which uses the chase as a subprocedure. Given@a CQ
and a set of TGDs and EGDS as input, the C&B algorithm re-
turns the set of minimal rewritings (w.r.t. the number of atoms in
the body) ofq that are equivalent tg on every instancé® = 3.

We denote its output abx (), if it is defined (the result is unde-
fined if and only if the underlying chase result is undefined).

Constraints for RDF. We interpret an RDF databade as a
ternary relatiorl” that stores all the RDF triples and express con-
straints for RDF as first-order sentences over predi¢at€or in-
stance, the TGD/z(T'(z, rdf:itype C) — JyT'(z,p,y)) asserts

crete, RDF(S) comes with a set of reserved URIs with predefined
semantics, such adf:typefor typing entities, ordfs:domainand
rdfs:rangefor fixing the domain and range of properties (cf. [12]).
As an example, let us consider the fixed RDF database

D := {(knows rdfs:domain Person, (knows rdfs:range Persor),
(P1, knowsP2)}.

According to the semantics aéifs:domain(rdfs:rangg, each
URI or blank node that is used in the subject (object) position of

“The extension is necessary to obtain the result in Theorem 8, see
Remark 1 in Appendix D.1 for more background information.

Shtt p: // www. w3. or g/ TR/ 2009/ WD- spar gl - f eat ur es- 20090702/

triples with predicaté&nowsis implicitly of type Person i.e. for D
the semantics implies two fresh triples:= (P1, rdf:type Persor)
andt, := (P2, rdf:type Persor). The SPARQL query language ig-

ExAmMPLE 12. Consider the SPARQL MD-only query
Q := SELECT?p1 2p2((?p1, knows 7p2) AND
(?p1, rdf:type Persor) AND (?p2, rdf:type, Person)). Then

nores the semantics of this vocabulary and operates on the RDF

database “as is”, thus disregarding triples that are not explicitly
contained in the database but only implicit by the RDF(S) seman-
tics. Still, when SPARQL is coupled with an RDF(S) inferencing
system, it implicitly operates on top of the implied database, which
satisfies all the constraints imposed by RDF(S) vocabulary. For
instance, implied databases always satisfy the two constraints

wa = Vp, ¢, z,y(T(p, rdfs:domainc), T'(z, p, y) — T(z, rdf:type, ¢)),
@r :=Vp,c,z,y(T(p, rdfsirangg c), T'(z, p, y) — T(y, rdf:type c)),

which capture the semantics offs:domain(y4) andrdfs:range
(¢r). Thus, whenever SPARQL is evaluated on top of an RDFS

inferencing engine, we can use these constraints (and others tha

are implicit by the semantics of RDF(S) [12, 11]) for SQO.
We note that constraint-based query optimization in the context
of RDFS inference has been discussed before in [11]. Our agproac

cq(Q) = ang?pl, ?p2) — T'(?pl knows ?p2), T'(?pl, rdf:type Persor),
T (?p2 rdf:type, Person
andcq '(cq(Q)) = Q. As another example, we can observe
thatcq™! (ang?z) «— T'(“a” , p, ?X)) is undefined, because expres-
sion ELECT?,((“a” , p, ?X)) has literala” in subject positiond

Although defined ford™ queries, the translation scheme can eas-
ily be applied to.A expressions (i.e., RD-blocks in queries): ev-
eryQ € Ais equivalent to theA™ query SELECTyvarg[0]) (@)-

Our first result is that, when coupled with the C&B algorithm,
the forth-and-back translatiores) andcg~! provide a sound ap-

roach to semantic query optimization fonA-only queries when-
ver the underlying chase algorithm terminates regularly:

LEMMA 9. Let@ be anA™ query, letD be an RDF database,
and letX: be a set of EGDs and TGDs. ¢bs(cq(Q)) is defined,

is much more general and supports constraints beyond those im-¢ € cbx(cq(Q)), andeq™ (¢) is defined, therqg ™' (¢) =s Q. O

plied by the semantics of RDFS, i.e. it also works on top of user-
defined or automatically extracted constraints. In [17], for instance,

we proposed to carry over constraints from relational databases,

Lemma 9 formalizes the key idea of our SQO scheme: given that
the chase result forq(Q) with X is defined for some AD-only
query @, we can apply the C&B algorithm tog(Q) and trans-

such as primary and foreign keys, when translating relational data |ate the resulting minimal queries back into SPARQL, to obtain

into RDF. Also the latter may serve as input to our semantic op-
timization scheme. As another difference to [11], our approach

addresses the specifics of SPARQL, e.g. we also provide rules for

the semantic optimization of queries that involve operater.O
Outline. We now come to the discussion of our SQO scheme.
The basic idea of our approach is as follows. Given a SPARQL
query and a set of constraints, we first translatedfonly sub-
queries of the input query into conjunctive queries. In a second
step, we use the C&B algorithm to minimize these CQs, translate
the minimized CQs (i.e., the output of C&B) back into SPARQL,
and substitute them for the initial subqueries. By default, the C&B
algorithm returns-equivalent queries that are minimal w.r.t. the
number of atoms in the body of the query. Yet, as described in [8],
the C&B algorithm also can be coupled with a cost estimation func-
tion and in that case would return queries that are minimal w.r.t. the

cost function. In the absence of a cost measure, we focus on the

minimality property in the following, but point out that the ap-
proach per se also supports more sophisticated cost measures.
The optimization scheme described above, which is restricted to
AND-only queries or AiD-only subqueries, will be described in
more detail in Section 5.1.1. Complementarily, in Section 5.1.2
we discuss SPARQL-specific rules that allow for the semantic opti-
mization of complex queries involving operatora FER and CPT.

5.1.1 Optimizing AND-only Blocks

We start with translation functions that map SPARQAZonly
gueries to conjunctive queries and vice versa:

DEFINITION 9. LetS C V and letQ € A™ be defined as

Q := SELECTs((s1,p1,01) AND ... AND (Sn,Pn,0n)).

We define the translatiomy (@) := g, whereg is defined as
q:= a‘ns(g) — T(817p17 01)7 e 7T(’S"7~7pn7 On)

and tuples contains exactly the variables frofh

Further, we define the back-translatieqi *(q) as follows. It
takes a CQ in the form of and returng) if it is a valid SPARQL
query, i.e. if(si,pi,0;) € UV x UV x LUV forall i € [n]; in
caseq is not a valid SPARQL query,g~'(q) is undefined. O

SPARQL AnD-only queries that ar&-equivalent taQ).

ExampLE 13. Consider query) from Example 12 and query
Q" := SELECTsp1,7p2((?p1, knows ?p2)). Further consider the
constraintspq, ¢ from Section 5.1 and definE := {y4, ¢r}.
We havecq(Q°™) € cbx(cq(Q)) and it follows from Lemma 9
thatcqg ' (cq(Q°")) = Q°"' == Q. An engine that builds upon an
RDFS inference engine thus may evalu@f®'in place ofQ. O

Lemma 9 states only soundness of the SQO scheme far- A
only queries. In fact, one can observe that under certain circum-
stance the scheme proposed in Lemma 9 is not complete:

ExamMPLE 14. Consider the SPARQL queries

Q1 := SELECT2,((?z, a,"I")),
Q2 := SELECT..((?x,a,“l”) AND (?z,b,c)),

andY := {Vz,y,2(T(z,y,z) — T(z,y,2))}. It holds that
Q1 =s Q2 because the answer to bofy and Q- is always
the empty set on documents that sati&fy the single constraint
in X enforces that all RDF documents satisfyilighave no lit-
eral in object position, because otherwise this literal would appear
in subject position, which is invalid RDF. Contrarily, observe that
cq(@Q1) #s cq(Q2). To see why, consider for example the rela-
tional instancel := {T'(a,a,"l"),T("I" ,a,a)}, wherel = 3,
(ca@1))(I) = {(a)}, but (cq(Q2))(I) = 0. Therefore, our
scheme would not detegi-equivalence betweeR; andQ.. O

Arguably, Example 14 presents a constructed scenario and it
seems reasonable to assume that such situations (which in some
sense contradict to the type restrictions of RDF) barely occur in
practice. We next provide a precondition that guarantees complete-
ness for virtually all practical scenarios. It relies on the observa-
tion that, in the example abovésq(Q1))* and (cq(Q2))* (i.e.,
the queries obtained when chastaj@:) andcq(Q2) with X, re-
spectively) do not reflect valid SPARQL queries. We can guarantee
completeness if we explicitly exclude such cases:

LEMMA 10. Let D be an RDF database and @the anA™
query such thatg™* ((cq(Q))*) € A™. If cbs(cq(Q)) terminates
then for allQ’ € A™ such thacq™ ((cq(Q"))*) € A™ thenQ’

€
cq ' (cbs(cq(@))) & Q' == @ and@’ minimal. o

5.1.2 SPARQL-specific Optimization

6. REFERENCES

By now we have a mechanism to enumerate equivalent minimal [1] R. Angles and C. Gutierrez. The Expressive Power of SPARQ

queries of AD-only (sub)queries. Next, we present extensions

beyond AND-only queries. We start with thelFER operator:

LEMMA 11. LetQ:,Q2 € A, S C V\ {?y} aset of variables,
Y be a set of TGDs and EGD$) be a document s.D |= X, and

2z, 7y € pVars([Q2]p). By Q2% we denote the query obtained

from Q- by replacing each occdryrence‘hj through?z. Then:

(FSI) If Q2 =s Q2 FILTER (?x =7y), then
SELECTs(Q2) = SELECTs(Q275%).

(FSI) If Q2 =s Q2 FILTER (?x =7y), then
[Q2 FILTER (—(?z =7y))]p = 0.

(FSI) If Q1 == SELECT,vurs([0.]p) (@1 AND Q2), then

[(Q1 OPT Q2) FILTER (=bnd(?z))]p = 0. u]

The intended use of Lemma 11 is as follows. Using standard

ISWC pages 114-129, 2008.

] C.Beeriand M. Y. Vardi. A Proof Procedure for Data Dependies.

J. ACM 31(4):718-741, 1984.

C. Weiss et al. Hexastore: Sextuple Indexing for Semaméb Data

Management. [IWLDB, pages 1008-1019, 2008.

[4] U.S. Chakravarthy, J. Grant, and J. Minker. Logic-ba&pgdroach
to Semantic Query OptimizatiomODS 15(2):162—207, 1990.

[5] R. Cyganiac. A relational algebra for SPARQL. Techniegiort, HP
Laboratories Bristol, 2005.

[6] D.J. Abadi et al. Scalable Semantic Web Data ManagemengUsin
Vertical Partitioning. INVLDB, pages 411-422, 2007.

[7] A. Deutsch, A. Nash, and J. Remmel. The Chase Reuvisited. In
PODS pages 149-158, 2008.

[8] A. Deutsch, L. Popa, and V. Tannen. Query Reformulatiottwi
ConstraintsSIGMOD Record35(1):65-73, 2006.

9] E. . Chong et al. An Efficient SQL-based RDF Querying Sokeln
VLDB, pages 1216-1227, 2005.

[3

chase techniques we can check if the preconditions hold; if this is [10] Francois Bry et al. Foundations of Rule-based Querywersg. In

the case, we may exploit the equivalences in the conclusion. In-

Reasoning Welpages 1-153, 2007.

formally, (FSI) states that, if the constraints imply equivalence be- [11] G. Serfiotis et al. Containment and Minimization of RDF/GeQy

tween?z and?y, we can replace each occurrenc€gby 7z if 7y
is projected away (observe th&tC V'\{?y}). Under the same pre-
condition, (FSII) shows that a filter(?z =?y) is never satisfied.
Finally, (FSII) detects contradicting filters of the formbnd(?x).
Our next results are semantic rewriting rules for operater:O

LEMMA 12. LetQ1,Q2,Q3 € AandS C V. Then

(OSl) If Q1 == SELECT,vurs([Q,]p) (@1 AND Q2) then
Q1 OPTQ2 =s Q1 AND Q2.
(OS”) If Q1 =5 Q1 AND Q2 then

Q1 OPT (Q2 AND Q3) =s, Q1 OPT Q3.]

Rule (OSl)shows that ®T can be replaced by ®D if the OpT
subexpression is implied by the constraint 4@SlI) eliminates
redundant AID expressions in ©T clauses. We illustrat@OSI)

ExampLE 15. Consider patterns := (?p, rdf:type Persor),
to := (?p,name ?n), andts := (7p,age ?a) and defineR, :=
SELECTp,2n,2a(t1 OPT (t2 AND t3)). LetX := {1, a2} with

oy = V(T (z, rdf:type Persor) — JyT'(z, namey)),

ag = Vz (T (z, rdf:itype Persor) — 3yT'(z,age y)).

Itis easily verified that; =5, SELECT7,(t1 AND (t2 AND t3)),

so rewriting rule(OSl)is applicable. Therefore, we shall conclude

that SELECT?p,2n,2a(t1 AND (t2 AND t3)) =5 Qo. |

The rules in Lemma 11 and 12 exemplify an approach to rule-
based semantic SPARQL optimization and can be extended on de

mand by user-defined optimization rules. Particularly (@&Sl)

seems useful in practice: in the Semantic Web, queries are often

Patterns. INSWG pages 607—623, 2005.

[12] C. Gutierrez, C. A. Hurtado, and A. O. Mendelzon. Fouiates of
Semantic Web Databases.PODS pages 95-106, 2004.

[13] A. Harth and S. Decker. Optimized Index Structures foefing
RDF from the Web. ILLA-WEB pages 71-80, 2005.

[14] D. S. Johnson and A. Klug. Testing Containment of Coniivec
Queries under Functional and Inclusion DependencieBADS
pages 164-169, 1982.

[15] J.J. King. QUIST: a system for semantic query optimizatio
relational databases. WLDB, pages 510-517, 1981.

[16] L. Sidirourgos et al. Column-store Support for RDF Data
Management: not all swans are white MhDB, page 1553, 2008.

[17] G. Lausen, M. Meier, and M. Schmidt. SPARQLing Constisfor
RDF. InEDBT, pages 499-509, 2008.

[18] Linked Datahttp://linkeddata. org/.

[19] M. Schmidt et al. An Experimental Comparison of RDF Data
Management Approaches in a SPARQL Benchmark Scenario. In
ISWC pages 82-97, 2008.

[20] M. Stocker et al. SPARQL Basic Graph Pattern Optimizatitsing
Selectivity Estimation. I'WWW pages 595-604, 2008.

[21] D. Maier, A. Mendelzon, and Y. Sagiv. Testing Implicatsof Data
Dependencies. IBIGMOD, pages 152-152, 1979.

[22] M. Meier, M. Schmidt, and G. Lausen. On Chase Termination
Beyond Stratification. IVLDB, 2009.

[23] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for
RDF.PVLDB, 1(1):647-659, 2008.

[24] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and @oitybf
SPARQL. Technical report, arXiv:0605124 cs.DB, 2006.

[25] J. Pérez, M. Arenas, and C. Gutierrez. Semantics of SHARQD6.

TR/DCC-2006-16, Universidad de Chile.

[26] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and @xitybf
SPARQL.ACM Trans. Database Sys84(3), 2009.

submitted to databases hidden behind SPARQL endpoints, S0 User§,7] a. polleres. From SPARQL to Rules (and back)WWW pages

may not be aware of integrity constraints that hold in the database.

787-796, 2007.

In such cases, they may specify parts of the query as optional, not[28] R. Fagin et al. Data Exchange: Semantics and Query Ansgeer

to miss relevant answers. If there are constraints that guarantee

the presence of such data, the engine can replacerhe@erator
by AND, which may accelerate query processing.

We conclude with the remark that optimization schemes may
couple our algebraic and semantic techniques, e.g. by decomposin
and moving filter conditions using the rules for filter manipulation
in Figure 2 to create situations in which the above lemmas apply.

Acknowledgments

The authors wish to thank the anonymous reviewers for their

Theor. Comput. S¢i336(1):89—-124, 2005.
[29] Resource Description Framework (RDF).
http://ww. w3. or g/ RDF/ .
[30] S. Alexaki et al. On Storing Voluminous RDF descriptiofiie case
of Web Portal Catalogs. IWebDB pages 43-48, 2001.

g{31] J. Smith and P. Chang. Optimizing the Performance of a Rekt

Algebra Database Interfac€ommun. ACM18(10):568-579, 1975.
[32] SPARQL Query Language for RDF. W3C Recommendation, 15
Januray 2008.

[33] L. J. Stockmeyer. The polynomial-time hierarcfijieor. Comput.
Sci, 3:1-22, 1976.

comments and suggestions and Claudio Gutierrez for fruitful dis- [34] Y. Theoharis et al. Benchmarking Database Representatif

cussions on the expressive power of SPARQL.

RDF/S Stores. ISWG pages 685-701, 2005.

APPENDI X (cf. functionm’). It is easily verified that the above definition al-
ways returns multi-sets valid according to Definition 5. Now we

A. ADDITIONAL DEFINITIONS are in the position to the define the bag semantics for SPARQL:

We give some background definitions that are not relevant for the
understanding of the paper itself, but are important for the under- DEFINITION 12 (SPARQL B\G SEMANTICS). Let D be an
standing of the proofs in the remainder of the appendix and clarify RDF database, be a triple patterng);, Q= denote SPARQL ex-
technical issues that were left out in the main section of the paper. pressionsR a filter condition, and> C V' be a finite set of vari-

. . L ables. We define the bag semantics recursively as follows.
A.1 Semanticsof Filter Conditions
[t := (2 := { | dom(ys) = vars(t) andy(t) € D}, m),

DEFINITION 10 (FILTER SEMANTICS). Given a mappingt, wherem(u) := 1 forall p € , andm(u) := 0 otherwise.
filter conditionsR, R, Ra, variables?z, 7y, ande,d € LU, we [Q1 AND Q2] 5 =[5 ™ [Q:]F
say thatu satisfiesR, written asy |= R, if and only if one of the [Q:1 OPT Q2] 5 =[]} X [Q:1}
following conditions holds. [Q: UNION Q2]}, :=[Q1]}, U [Q=]}
o +

e Ris of the formbnd(?z) and?z € dom(u). [@:Fter R], :=or([@1]D)

e R is of the forme = d andc equals tad. [SELECTs(Q)]E :=ms([Q1]F)

e Ris ofthe form?z = ¢, 7z € dom (), andu(?z) = c. " - - i

e Ris of the form?z = ?y, {?z, 7y} C dom(u), and it holds [AsK(@QUI5 =0 = [@:15) =

thatu(?z) = u(?y).
e Ris of the form—R; and it is not the case that}= R;.
e Risofthe formR: vV R, andu |= Ry or i |= Ro.
e Risofthe formR; A Ry andy = Ry andy = Rs.]

Note that this definition is identical to Definition 4, except for
the case of triple pattern evaluation, where we represent the result
of evaluating a triple pattern as a multi-set. Hence, when evaluating
. a SPARQL expression bottom-up using bag semantics, algebraic
A.2 SPARQL Bag Semantics operations will always be interpreted as multi-set operations.

Implementing the ideas sketched in Section 2, we formally de-
fine the bag semantics for SPARQL as follows. First, we overload A.3 TGDs, EGDs, and Chase

the algebraic operations from Definition 3: We fix three pairwise disjoint infinite sets: the setohstants\,
the set oflabeled nullsA,...;;, and the set ofariablesV. Often
DEFINITION 11 (SPARQL B\G ALGEBRA). Let R be a fil- we will denote a sequence of variables, constants or labeled nulls
ter condition,S C V a finite set of variables, antlf := (Q,m), by @. A database schem® is a finite set of relational symbols
M; := (4, my), M, := (Q,,m,) be mapping multi-sets We de- {R1,..., Rn}. To everyR € R we assign a natural number(R)
fine the operations joirX), union (U), set minusY), left outer join called itsarity. A database instancé is a finite set ofR-atoms
(), projection (r), and selectiond) over mapping multi-sets: that contains only elements frotaU A,,,;; in their positions. The

domain of1, dom(I), is the set of elements appearingl/in
M; X M, == (Q',m’), where
Q ={wUpe | € U, pr € Qrt g ~ prr} and DEFINITION 13 (TUPLE-GENERATING DEPENDENCY).

i A tuple-generating dependen D) is a first-order sentence
MV (K) 1= 20 g pig) €4 (]) €2 X 20 i Upit =) ple-g gdep &eD)

forall u € M(_ml(m) * e (hr)) a:=VE(6(T) — FgY(T, 7))

M; U M, = (', m’), where such that (a) botkp and+) are conjunctions of atomic formulas
Q = {r | pur € Qor e € Q.3 and (possibly with parameters fromy), (b) + is not empty, (C)¢ is
m' () := mq(p) + m. () forall p e M. possibly empty, (d) botkh and+) do not contain equality atoms and

, (e) all variables fronx that occur imy must also occur i. We

M\ My := (€', m’), where denote bypos(«) the set of positions ir. O
Q i={w € Q| forall u, € Qr : py # pr}and
m/(p) = mu(p) if p € Q', andm’(p) := 0 otherwise. DEFINITION 14 (EQUALITY-GENERATING DEPENDENCY).

M, ™) M, == (M; X M,) U (M, \ M,) An equality-generating dependency (EGD) is a first-order sentence

ms(M) := (Q',m'), where a = VT (p(T) — z; = x5),

Q = {p1 | Jp2 : pr Upz € Q Adom(ur) C S
A dom(u2) NS =0} and wherez;, z; occur ing and ¢ is a non-empty conjunction of
m’ = . . m forall 4 € M. equality-freeR-atoms (possibly with parameters frafy). We de-
(k) Z‘“rE{”*EQMS({”*})_{”}} (ket) g note the set of positions if by pos(«). O
or(M) = (2',m"), where
Q' ={peQ|pkER}and DEFINITION 15 (HOMOMORPHISM). A homomorphisrfrom
m’ () :=m(p) if p € Q', andm’(u) := 0, otherwise. a set of atomsA4; to a set of atomsA, is a mappinge : A U
V. — A U A,.u such that the following conditions hold: (i)
We refer to the above algebra8BARQL bag algebra o if c € A, thenu(c) = cand (i) if R(c1,...,cn) € Ai, then
R(p(c1)s - plen)) € As. o

The above definition exactly corresponds to Definition 3 w.r.t. the
mappings that are contained in the result set (i.e., the definition We are now in the position to introduce the chase algorithm. Let
of Q' in each rule mirrors the definition of SPARQL set algebra), X be a set of TGDs and EGDs aifichn instance, represented as a
but additionally fixes the multiplicities for generated set members set of atoms. We say thata TGIZ¢ € X is applicable td if there

is a homomorphismu from body(VZ¢) to I and . cannot be ex-
tended to a homomorphispi O 1 from head(VZp) to I. In such

a case the chase stéﬁmﬂf“ J is defined as follows. We define

a homomorphisny as follows: (a)v agrees withy on all univer-
sally quantified variables ip, (b) for every existentially quantified
variabley in Yz we choose a "fresh” labeled nul], € A,,.,;; and
definev(y) := ny,. We setJ to I U v(head(VZy)). We say that
an EGDVzy € X is applicable td if there is a homomorphism
from body (V) to I and it holds thafi(z;) # u(x;). In this case

the chase step 2™ J is defined as follows. We settto

e [exceptthatall occurrencesofz ;) are substituted by (z;) =:
a, if u(x;) is alabeled null,

e [exceptthatall occurrencespfz;) are substituted by (x;) =:
a, if u(x;) is alabeled null,

e undefined, if bothu(z;) and u(z
we say that the chase fails.

A chase sequends an exhaustive application of applicable con-
straints

;) are constants. In this case

0,20 $1,a1 ¥2,a2
Iy — I, —= I, == .

where we impose no strict order on what constraint must be applied
in case several constraints are applicable. If the chase sequence i

finite, sayl, being its final element, the chase terminates and its re-
sultI{ is defined ad,.. Although different orders of application of
applicable constraints may lead to different chase results, it is folk-
lore that two different chase orders always lead to homomorphi-
cally equivalent results, if these exist. Therefore, we wiitefor

the result of the chase on an instadaenderX.. It has been shown

in [21] thatT® |= X. If a chase step cannot be performed (e.g.,

A.6 DISTINCT and REDUCED Queries

We provide a definition of BsTINCT and REDUCED queries.

DEFINITION 18 (SELECT DISTINCT QERY). Let @ be
a SPARQL expression arfiC V. A SPARQLSELECT DISTINCT
queryis an expression of the formeSecT DISTINCTs(Q). We
extend the bag semantics from Definition 12 ®.8CT DISTINCT
queries as follows. LetQ™, m") := [SELECTs(Q)]},. We de-
fine [SELECT DISTINCTs(Q)] 1, := (21, m), wherem is defined
asm(u) = 1if m™(p) > 1 andm(u) := 0 otherwise. O

DEFINITION 19 (SELECT REDUCED @ERY). Let Q be
a SPARQL expression ar®iC V. A SPARQLSELECT REDUCED
queryis an expression of the formeSeEcT REDUCEDs (Q). We
extend the bag semantics from Definition 12 .8CT REDUCED
queries. Let(Q",m") = [SELECTs(Q)]}. The solution to
query SLECT REDUCEDs(Q) is the set of mapping sets of the
form (QF,m) s.t. for ally € M it holds that (iym™ (1) = 0 —
m(p) = 0and (i)ym™ () > 0 — m(u) > 1Am(s) < m* (p).0

B. PROOFSOF COMPLEXITY RESULTS

B.1 Proof of Lemmal

We prove the lemma by induction on the structur&ofTo sim-
plify the notation, we shall writg. € [Q]}, if and only if u € QF
for [Q]} := (7, m™). This notation is justified by the property
thatm™ (u) > 1 for eachy € QF. Note that the SPARQL bag
algebra operators introduced in Definition 3 maintain this property,
i.e. whenever an algebraic operation generates a mappittgen
the multiplicity that is associated withis at least one.

because a homomorphism would have to equate two constants) or The induction hypothesis is € [Q]p < p € [Q]5. For
in case of an infinite chase sequence, the chase result is undefinedthe basic case, let us assume tgat= t is a triple pattern. Let

A.4 OPT-rank

Formally, therank of an expression is defined as follows.

DEFINITION 16 (OPT-RANK). The nesting depth of ©r ex-
pressions in SPARQL expressioh called QpT-rank rank(Q), is
defined recursively on the structure@fas

rank(t) =0,

rank(@Q1 FILTER R) :=rank(Q1),

rank(Q1 AND Q2) :=maxrank(Q1),rank(Q2)),
rank(Q1 UNION Q2):=maxrank(Q:),rank(Q2)),
rank(@Q1 OPTQ2) :=maxrank(@Q1)rank(@2)) + 1,

wheremax(ni,n2) returns the maximum ot andn..

A.5 Function pVars(A)

We provide a formal definition of functionVars(A):

DEFINITION 17 (FUNCTION pVary. Let A be a SPARQL set
algebra expression. FunctignVars(A) extracts the set of so-
calledpossible variablefrom a SPARQL algebra expression:

pVars([t]p) =wvars(t

()
pVars(Ar X Az) pVars(A1) U pVars(Asz)
pVars(A1 U Az) :==pVars(A1) U pVars(Asz)
pVars(Air \ Az) :=pVars(Ay)
pVars(ﬁs(1)) ==pVars(A1)NS
pVars(or(Ai1)) :=pVars(A1) O

Q = [t]p and (21, m™) := [t]} be the results obtained when

evaluating® on D using set and bag semantics, respectively. From
Definitions 3 and 11 it follows immediately thet = QO+ and thus

w € [Qlp < u € [Q]F5, which completes the basic case. We

therefore may assume that the hypothesis holds for each expression.

Coming to the induction step, we distinguish five cases. (1) Let

Q = PLAND P,. =: Letpu € [P1 AND P]p [Pi]p ™
[P=] . Then, by definition of operatox, there areu1 € [Pi] b,

w2 € [P2]lp Stopr ~ pe andps U pe = u. By application

of the induction hypothesis, we have that € [Pi]f andus €
[P=]1, and consequentlyy = 1 U po € [Pi]f X [P2]} =

[P1 AND P»] . Direction “<” is analogical. We omit the proof

for case (2)QQ := P; UNION P, which is similar to case (1).
Next, (3) letQ := P, OPT P»,. We exemplarily discuss direction
=", the opposite direction is similar. Let € [P, OPT P;]p =
(IP1]p X [Pe]p) U ([Pi]p \ [P2]p). Thenu is generated (i) by

the subexpressiofiP1|p X [P:]p or (i) by [Pi]p \ [P:]b-

The argumentation for (i) is identical to case (1), i.e. we can show

that. is then generated by OPT P25, = ([P1]5 ™ [P]5) U
([P05 \ [P2]5), namely by the left side of the union. For case

(ii), we argue tha € [P1]p \ [Pe]p — p € [P} \ [P2]5- So

let us assume that € [P1]|p \ [Pz]p- Thenu € [P1]p and there

is no compatible mapping’ ~ w in [P:]p. We haveu € [Pi]}

by induction hypothesis. Assume for the sake of contradiction that

there is a compatible mapping ~ pin [P2] 5. Then, again by in-

duction hypothesis, we have thdt € [P2] p, which contradicts to

the assumption that there is no compatible mappingito[P] p.

This completes case (3). Finally, cases@)= SELECTs(P) and

(5) Q := P FILTER R are easily obtained by application of the

induction hypothesisJ

B.2 Proof of Theorem 2 For instance, iV, = Vi, = {z}, the second and the third part

Theorem 2(1):We provide a PTve-algorithm that solves the ~ ©Of the union would generate the triplgs, var:, z) and(a, z, z),
EVALUATION problem for fragmentF2/. It is defined recursively ~ respectively, where is a fresh URI for the boolean variabie

on the structure of the input expressignand returndrue if 4 € Foreach claus€’; := v1 V- - -V v; V-wjp1 V- -V —oy, Where
[P] b, falseotherwise. We distinguish three cases. (aplf= t is v, ..., v; are positive and; .1, . . ., vx are negated variables, we
a triple pattern, we returttueiif and only if . € [t]p. (b) If P := define a separate SPARQL expression

P UNION P> we (recursively) check ifs € [Pi]p V i € [P2]p
holds. (c) If P := P, FILTER R for some filter conditionR, we
returntrueif and only if u € [Pi]p A R [= u. Itis easy to see
that the above algorithm runs in polynomial time. Its correctness
follows from the definition of the algebraic operatorando.
Theorem 2(2)To prove that the FALUATION problem for frag-
ment AU is NP-complete we need to show membership and hard-
ness. The hardness part was sketched in Section 3.1, so we re-
strict on proving membership here. LBtbe a SPARQL expres-
sion composed of operatorsnd, UNION, and triple patternsp
a document, ang a mapping. We provide an NP-algorithm that
returnstrue if ;. € [P]p, andfalseotherwise. Our algorithm is
defined on the structure @?: (a) if P := t is a triple pattern then
returntrueif . € [t] p, falseotherwise; (b) ifP := P; UNION P,
return the truth value of. € [Pi]p V p € [P:]p; finally, (c) if
P := P; AND P», then guess a decompositiorn= 11 Uu2 and re-
turn the truth value ofi; € [Pi]p A pe € [P2]p- The correctness
of the algorithm follows from the definition of the algebraic oper-
atorsX andU. Clearly, this algorithm can be implemented by a
non-deterministic Turing Machine that runs in polynomial time.

Pe, = (

i

(. ((ayvars, Tvar;)
OPT ((a, v1, Tvar;) AND (a, true, 7V1)))

OPT ((a, v;, Tvar;) AND (a, true, 7Vj})))
OPT ((a, vj+1, Tvar;) AND (a, false, ?Vit1)))

OPT ((a, vk, Tvar;) AND (a, false, ?V))),

wherewv, ..., vi stand for the URIs that are associated with the
respective variables accordingfa We then encode formula as
Pw = Pcl AND ... AND Pcn.

It is straightforward to verify that) is satisfiable iff there is a
mappingu € [Py]p. Even more, each mapping € [Py]p
represents a set of truth assignments, where each assigppient
obtained as follows: for eachy € V,, we setp,(vi) := pu(?V;)
if 7V; € dom(p), or define eithep, (vi) := 0 or p,(v;) == 1if
Vi & dom(p); vice versa, for each truth assignmenthat satis-
fiese there isy € [Py] p that defineg according to the construc-
tion rule for p,, above. Note that the definition pf, accounts for
the fact that som&V; may be unbound ip; then, the value of the
B.3 Proof of Theorem 3 variable is not relevant to obtain a satisfying truth assignment and
we can randomly choose a value fgrin truth assignmen,,.

Given P, we can encode the quantifier-sequence using a series
of nested ®T statements as shown in [24]. To make the proof
self-contained, we shortly summarize this construction. We use
SPARQL variables’ X, ...,?X,, and ?Y3,...Y,, to represent
variablese1, ...z, andyi, . .., ym, respectively. In addition, we
use fresh variablesAy, .. .7 A,,, 7By, . . .7 B.,,, and operators KD,
OPT to encode the quantifier sequenée, Jy; . . . Ve, Iym,. For
each: € [m] we defineP; and@; as

We reduce QBF, a prototypical P&CE-complete problem, to
EVALUATION for class.AO. The hardness part of the proof is in
parts inspired by the proof of Theorem 1(3) stated before, which
has been formally proven in [24]: there, QBF was encoded us-
ing operators AD, OPT, and WNION. Here, we encode the prob-
lem using only A\D and CPT, which turns out to be considerably
harder. Membership in FBCE, and hence completeness, then fol-
lows from the P®AcCE membership of clasd O/ O AO (cf. The-
orem 1(3)). Formally, QBF is defined as folloWs.

P; :=((a,tv,?X1) AND ... AND (a,tv,?X;) AND

QBF: given a quantified boolean formula (a,tv,?Y1) AND ... AND (a,tv,?Y;_1) AND
@ = Vr1Iy1 Ve Iy . . . Vo, Jymt as input, whereb is a (a, false, 7Ai_1) AND (a, true, 74;)),
quantifier-free formula in conjunctive normal form (CNF): Qi:=((a,tv,?X1) AND ... AND (a,tv,?X;) AND
is the formulay valid? a,tv,?Y1) AND ... AND (a,tv,?Y;) AND

(

(a, false, ?B;—1) AND (a, true, ?B;)).

Let us start the discussion with a quantified boolean formula

Using these expressions, we encode the quantified boolean for-

= Va1dy1Veodys . . . Ve, Jym mulay as
and assume that the inner formuheof the quantified formula is P,:=(a, true, ?By) OPT (P; OPT (Q:
in conjunctive normal form, i.ep := Ci A --- A C,, where the(; OPT (P, OPT (Q2
(i € [n]) are disjunctions of literals By V,, we denote the set of L
(boolean) variables iny and by Ve, the set of variables in clause OPT (P, OPT (Qum AND Py))...)))).

C;. For our encoding, we use the polynomial-size database
It can be shown that := {?By — 1} € [P,]p if and only if
D :={(a,falsg0), (a,true, 1), (a, tv,0), (a,tv, 1)} U ¢ is valid, which completes the reduction. We do not restate this
{(a,vari,v) [v e Ve, } U {(a,v,0) |v e Vy}, technical part of the proof here, but refer the interested reader to

)) the proof of Theorem 3 in [24] for detailS.
where the second and the third part of the union should be under-

stood as a syntactic replacemenudfy variable names iftc, and B.4 Proof of Theorem 4

Vi, respectively (and the variable names are understood as URIS). aAdapting the idea from the proof of Theorem 3, we present a
SNote that, like the proof in [24], we assume that the inner formula réduction from QBF to the ¥aLUATION problem for SPARQL

of the quantified formula is in CNF. Itis known that also this variant queries, where the challenge is to encode the quantified boolean
of the QBF problem is PSACE-complete. formula using only operator ©r. Rather than starting from scratch,

A literal is a boolean variable or a negated boolean variabte:. our strategy is to take the proof of Theorem 3 as a starting point and

to replace all AD expressions by ©r-only constructions. As we
will see later, most of the AD operators in the encoding can sim-
ply be replaced by ©1 without changing the semantics. However,
for the innermost AID expressions in the encoding 8% it turns

out that the situation is not that easy. We therefore start with a
lemma that will later help us to solve this situation elegantly.

LEMMA 13. Let

Q,Q1,Q2,...,Q, (n > 2) be SPARQL expressions,

S denote the set of all variables @, Q1, Q2, ..., Qn,

D := {(a,falsg0), (a,true, 1), (a,tv,0), (a,tv,1)} U D’ be
an RDF database such thm(D’) N {true, false} = 0,

e V5,7V, ..., 7V, be aset oh — 1 variables distinct from the
variables inS.
Further, we define the expressions
Q" :=((...((Q OPTV,) OPT V3)...) OPTV,,),

Q"=((-..((Q1 OPT(Q2 OPT V7))
OPT (Q3 OPT V3))
- .OPT (Qn OPTV,,)), where
Vi := (a,true, ?V;) andV; := (a, false, ?V;).

The following claims hold.

DOQp ={pu{tVar=1,....Wa = 1} | p € [Qp}
(2) [Q" OPT (Q1 AND Q2 AND ... AND Q.)]p =
[Q OPT((...((Q" OPTV>2) OPTV3)...) OPTV)b

Informally speaking, claim (2) of the lemma provides a mecha-
nism to rewrite an AID expression that is encapsulated in the right
side of an @T expression by means of anP@ expression. It is
important to realize that there is a restriction imposed on the left
side expressio)’, i.e.)’ is obtained fromy by extending each
result mapping ifQ[p by {?V> — 1,...,7V, — 1}, as stated in
claim (1). Before proving the lemma, let us illustrate the construc-
tion by means of a small example:

EXAMPLE 16. Consider the database
D :={(a,false0), (a, true, 1), (a,tv,0), (a,tv,1)}
and the expressions

Q = (a,tv,?a) ,s0[Q]p = {{?a > 0},{?a > 1}},
Qi:= (a,tv,7b) ,s0[Qi]p= {{?b+— 0},{?b+— 1}},
Q2:= (a,true, ?b), so[Q2]p= {{7b— 1}}.

Concerning claim (1) of Lemma 13, we observe that

[QTp=[Q OPTV3]p
= [Q OPT (a, true, ?V2)|p
={{?7a—0,7Va—1},{?a+— 1,7Vo +— 1}},

so[Q’] p differs from[Q] » only in that each mapping contains
an additional binding V> — 1. As for claim (2) of the lemma, we
observe that the left expression

[Q" OPT (Q1 AND Q2)]p
=[QTp X {{7b—1}}
={{%a—0,70— 1,7Vo — 1}, {?a+ 1,70 +— 1,7Va — 1}}

is equal to the right side expression

[Q OPT ((Q1 OPT (Q2 OPT V3)) OPT V2)]p
= [QTp ™ (([Q:]p ™ ([Q2]p ™ [V2]p)) M [V2] p)
2 [Q']0 M ([0 2 {7 1,7V2 — 1}}) X [Va]p)
2 [Q'1p 2 ({{7b+— 0}, {7b+— 1,2V3 > 1}} X [Wa] p)
D 1QTp 2 {{? 1+ 0,7Va > 0}, {2b 1,7V v 1}}
4 (20 0,7Vs — 1}, {?7a — 1,7V, — 1}}

N {{?+— 0,7Va+— 0}, {70 +— 1,7Vo +— 1}}

@ {{?7a—0,26— 1,7V — 1}, {?7a— 1,76 — 1,7V5 — 1}}.

The right side expression simulates the innevDAexpression
from the left side using a series ofP@ expressions. The idea of
the construction is as follows. In step (1) we extend each map-
ping in [Q2] » by an additional bindingV> — 1. Now recall that
Q1 H Q2 := (1 X Q2) U (21 \ Q2). When computing the left
outer join betweerfQ:]p» and the mapping set from step (1) in
step (2), the bindingV> — 1 will be carried over to mappings that
result from theX part of the left outer join (cf. mapping?b —
1,?V2 — 1}), but does not appear in mappings that are generated
from the\ part of the left outer join (cf. mapping?’b — 0}). Next,
in step (3) we extend all mappings from the prior set for wiith
is not bound by a bindingVs +— 0. This extension affects only the
mapping obtained from thg part, while the mapping from thi
part is left unchanged. In the final steps (4a) and (4b), the bindings
?Vs +— lin eachy € [Q'] p serve as filters, which reject all map-
pings that come from thg part. Thus, only those mappings that
have been created by thépart are retained. Hence, we simulated
the behavior of the AD expression (the syntactic counterparts of
operatorX) using CPT operators. |

Proof of Lemma 13

Lemma 13(1)First, we observe that allV; are unbound in each
u € [Q] b, because by assumption thE; are fresh variables that
do not appear ii)). Next, given thatlom(D’) does not contain the
URI true it follows that no triple inD’ matches the triple pattern
Vi := (a,true, ?V;), so we have thafV;[p = {{?Vi — 1}}.
Hence, what expressiof’ does is to successively extend each
mappingu € [Q]p by the (compatible) mapping&?Vs +— 1},

..., {?V, — 1}, so the claim holds.

Lemma 13(2)We study the evaluation of the right side expres-
sion and argue that it yields exactly the same result as the left side
expression. Rather than working out all details, we give the in-
tuition of the equivalence. We start the discussion with the right
side subexpressiof”. First observe that the result of evaluating
Q: OPTV; corresponds to the result &f;, except that each result
mapping is extended by bindirtdg; — 1. We use the abbreviation
Q)" := Qi OPTV;, which allows us to compactly deno@@’ by
((...((Q:1 OPTQY?) OPTQR4®) OPT ...) OPTQY"). By appli-
cation of semantics and algebraic laws, such as distributivity of
overU (cf. Figure 2) we brind@’'] p into the form

HQ//HD
[((... ((Q1 OPTQY?) OPTQY?) OPT ...) OPTQY™)]p

[Q1 AND Q3> AND Q}® AND ... AND QY] p U Pp,

where we call the left subexpression of the unjoim part and
Pp attheright side is an algebra expression (over databaséth
the following property: for each mapping € Pp there is at least
one?V; (2 < ¢ < n)s.t.?V; € dom(u). We observe that, in
contrast, for each mappingthat is generated by the join part, we
have thatdom(p) 2 {?Va,...,?V,} and, even morey(?V;) =

1, for 2 < i < n. Hence, these mappings are identified by the The first modification of the proof for clasd©O concerns the

propertyu(?Vz) = u(?Vs) = --- = u(?V,) = 1. Going one step encoding of clauseS; :=v; V -+ -V v; V-w;i1 V-V —wg. In
further, we next consider the larger right side subexpression the prior encoding we used bothnvd and GPT operators to encode
_ _ _ such clauses. Itis easy to see that we can simply replace esch A
P = ((...((Q" OPTV32) OPTV3) OPT ...) OPTV). operator there by ©r without changing semantics. The reason is
. . .) simply that, for all subexpressios OPT P in the prior encoding
It is easily verified that, when evaluating expressidh we ob- of Pe., it holds thatvars(Py) N vars(P) = 0 and[P2]p # 0.
tain exactly the mappings froffi"]», but each mapping. € To be more precise, eachw expression in the encoding-, of a
[Q"]p is extended by’V; — 0 for all variables?V; & dom(p). clauseC; is of the form(a, v;, 7var;) AND (a, false/true, 7V;), so
As argued before, all mappings in the join part@f are com- the right side triple pattern generates one result mappig —

plete in the sense that all; are bound tal, so these mappings /13 ‘which is compatible with the single mappif@var; — v;}
are not modified. The remaining mappings (i.e. those originating ophained when evaluating the left pattern. Clearly, in this case the

from Pp) will be extended by bindingsV; — 0 for at least one left join is identical to the join. When replacing allv® operators
?V;. The resulting situation can be summarized as follows: first, for by OPT, we obtain arO-encodinngpT for clause<’;:

eachu € [P']p it holds thatdom(u) D {?V5,...,?V,}; second,

for thoseu € [P']p that evolve from the join part dfQ”] p we PET = (... ((- .. ((a,var:, Tvar;)
have thap(?Vz) = - - - = u(?V;,) = 1; third, for thoseu € [P']p OPT ((a, v1, ?var;) OPT (a, true, ?V1)))
that evolve from the subexpressiéty (i.e., not from the join part) e
thereisi € {2,...,n} such thap(?V;) = 0. OPT ((a, v;, Tvar;) OPT (a, true, ?Vj)))
Going one step further, we finally consider the whole right side OPT ((a,vj+1, Tvar;) OPT (a, false, ?7V;j11)))
expression, nameljQ’ OpPT P']p. From claim (1) of the lemma
we know that each mapping Q'] » maps all?V; to 1. Hence, OPT ((a, vk, Tvar;) OPT (a, false, ?Vi))).

/
when computindQ’ OPT P'|» = [Q]p X [P’ p, the bindings This encoding gives us a preliminary encodifig for formulay
Vi - ! fo.r a”,l €{2. ; "} In everyu € [¢’]]L.’ assert that thg (as areplacement fa?,, from the proof for Theorem 3), defined as
mappmg/;s i@]D_ are pa|rW|se incompatible w!th those mapping Pw _ POPTAND ... AND P2°"; we will tackle the replacement
from [P’] 5 that bind one or moréV; to 0. As discussed before, fyhe remaining AiD expressions iR, later. Let us next consider
the co_ndltlon that_ a_t least ofi&; maps tc ho_Ids for _e>_<act_|y those the P; andQ); used for simulating the quantifier alternation. With a
mappings that originate frotfip, so aIIlmappln,gs originating from gjjj¢ argumentation as before, we can replace each occurrence of
Pp do not contribute to the result §&" OpT £’ p. Hence, operator AD by OPT without changing the semantics. This modi-
fication results in the equivalentr@-only encodingsP""" (for P;)

[Q OPTP'|p=[Q]p HN[P]p andQ%"" (for Q;), i € [m], defined as

=[Q']p ™ [Q: AND Q;@ AND Q3® AND ... AND QY] p

= [Q' OPT (Q1 AND Q3 AND Q3* AND ... AND Q)] p. PP :=((a,tv,?X1) OPT ... OPT (a,tv, ?X;) OPT
(a,tv,?Y1) OPT ... OPT (a,tv,7Y;—1) OPT

Even more, we know from claim (1) of the lemma that Al; (a, false,?A;_1) OPT (a, true, 7A;)),

are bound td for eachy € [Q']p. It follows that we can replace 7= ((a,tv,?X,) OPT ... OPT (a,tv, ?X;) OPT

Q. = Q; OPTV; by Q; in P, without changing the semantics (a,tv,?Y1) OPT ... OPT (a, tv, 7Y;) OPT

of expressmr‘[Q OPT P']p: (a, false,?B;_1) OPT (a, true, ?B;)).
[Q' OpT P'p Let us shortly summarize what we have achieved so far. Given
— [@ OPT(Q1 AND Q)2 AND QY2 AND ... AND Q¥")]p all modifications before, our preliminary encodify for ¢ is
= [Q' OPT(Q1 AND Q2 AND Q3 AND ... AND Q,)]p P:=(a, true, ?Bo) OPT (P2°T OPT (QF"
The final step in our transformation corresponds exactly to the '(')'PT (P27, OPT (QYT,

left side expression of the original claim (2). Thus, we have shown OPTP.))...)), where

that the equivalence holds. o o
P.:=P,"" OPT(Q,, AND P})

Proof of Theorem 4 — PO Opr (QSFT AND POTAND ... AND POT).

Having established Lemma 13 we are ready to proveARE-)])]
completeness for fragme6t. As before in the proof of Theorem 3, Expression?. is the OOQLY S%ETGXPVGSS!%Q of, that still contains
it suffices to show hardness. Following the idea discussed before, AND operators (wher@y,", PG, . .., P, are GpT-only expres-

we show that each WD expression in the proof of Theorem 3 can Sions). We now exploit the rewriting from Lemma 13 and replace
be replaced by a construction using onlpexpressions. Letus P by theO expressionP, ™ defined as

again start with a quantified boolean formula PO .—
! 1" X7 7 X7
0 = Vo1 Ty1 Va2 Tys . . . Vomymb, Q" OPT((...((Q"OPTV3) OPTV3) OPT ...) OPTV 41)),
where

wherey is a quantifier-free formula in conjunctive normal form, opT
i.e. v is a conjunction of clauseg := Cy A --- A C,, where the Q= (C ((POPT OpT VQ)OEPT V3)...) OPT Viipa),
C;i (i € [n]), are disjunctions of literals. As before, By, we Q"= ((-.. (@m" OPT (FC 6 OpPT V%))
denote the set of variables insigie by V¢, the variables in clause OPT (Pgy" OPT V3))

C; (either in positive of negative form), and we define the database
OpT (PETT OPT Viuy1))),

D :={(a,tv,0), (a,tv, 1), (a, false 0), (a, true, 1)} U Vi := (a, true,?V;),V; = (a, false,?V;),
{(a,var;,v) |ve Ve, } U {(a,v,v) |v e Vit andthe?V; (i € {2,...,n + 1}) are fresh variables.

Let P9°" denote the expression obtained frd®h by replacing
the subexpressiof. by P°"". First observe thaP?"" is an O
expression. From Lemma 13(2) it follows thP""], equals
to [Q" OPT (QST AND PE7"... AND PE™")]p, where the eval-
uation resulffQ’] » is obtained from[P>""] » by extending each
u € [PSP"] p with bindings?Va — 1, ..., ?V,,41 — 1, according

flo) =7V =1
f(h1 A p2)=1(101) A f(32)
f(h1 V Ya)=1(h1) V f(b2)
f(=p1) :=—1(n)

In the expressioP,,, the AND-block generates all possible val-
uations for the variables i, while the RLTER-expression retains

to Lemma 13(1). Consequently, the result obtained when evaluat- exactly those valuations that satisfy formulalt is straightforward

ing P2 is identical to] P.] p except for the additional bindings for
(the fresh) variable8Vs, ..., 7V, 1. Itis straightforward to verify

to verify thate is satisfiable iff there is a mapping € [Py]b.
Even more, for each € [Py]p the truth assignment,, defined

that these bindings do not harm the overall construction, i.e. we can asp,(v) := u(?V) for all variablesv € V,, satisfies the formula

show that{?By — 1} € [P p iff ¢ is valid.O

B.5 Proof of Theorem 5

We start with a more general form of the QBF problem, which
will be required later in the main proof of Theorem 5. The new
version of QBF differs from the QBF versions used in the proofs
of Theorems 3 and 4 (cf. Section 3.2) in that we relax the condition
that the inner, quantifier-free part of the formula is in CNF. We call
this generalized version QBF* and define it as follows.

QBF*: given a quantified boolean formula
@ = V131 VaeeIys . . . YV, Jym), as input, where) is a
quantifier-free formula: ig valid?

LEMMA 14. There is a polynomial-time reduction from QBF*
to the SPARQL EALUATION problem for classdF 0.8]

Proof of Lemma 14

The correctness of this lemma follows from the observations that
(i) QBF* is known to be P8acecomplete (like QBF), (ii) the
subfragmentd® C AFO is PSAcEe-hard and (iii) the superfrag-
mentE O AFO is contained in PBACE. Thus, AFO also is
P SrPace-complete, which implies the existence of a reduction.

We are, however, interested in some specific properties of the re-

duction, so we will shortly sketch the construction. We restrict our-

selves on showing how to encode the inner, quantifier-free boolean

formulay (which is not necessarily in CNF) using operatonstA
and ALTER. The second part of the reduction, namely the encoding

1) and, vice versa, for each truth assignmethat satisfieg) there

is a mapping: € [Py]p that defineg. The rest of the proof (i.e.,

the encoding of the surrounding quantifier sequence) is the same
as in the proof of Theorem 3. Ultimately, this gives us a SPARQL
expressionP, (which containsP,, above as a subexpression) such
that the formulap is valid if and only the mapping := {Bo — 1}

is contained i P,]p.O

The next lemma follows essentially from the previous one:
LEMMA 15. Let
D := {(a,falsg0), (a,true 1), (a,tv,0), (a,tv, 1)}

be an RDF database apd:= Va13y; ... V&, Iymy (m > 1)
be a quantified boolean formula, whesds quantifier-free. There
is an encodingnc(y) such that

1. enc(p) € E<om,

2. pisvalidiff {?By — 1} € [enc(y)]p, and

3. pisinvalid iff for eachp € [enc(¢)]p it holds thaty 2

{?By — 1,74; — 1}. O

We omit the technical proof and state a last result before turning

towards the proof of Lemma 5:

LEMMA 16. LetP; and P, be SPARQL expressions for which
the evaluation problem is ix!, ¢ > 1, and letR be a RLTER
condition. The following claims hold.

1. The B/ALUATION problem forP; UNION P is in >F.

2. The B/ALUATION problem forP; AND P, isin X7,

3. The E/ALUATION problem forP; FILTER Ris in ¥, |

of the quantifier sequence, is the same as in the proof of Theorem 3.

Let us start with a quantified boolean formula of the form

@ = Vx13dyi1Veadys . . . Vo, Jym),

Proof of Lemma 16

Lemma 16(1): According to the semantics we have thate
[P1 UNION P;]p ifand only if p € [Pi]p or p € [P2]p. By
assumption, both conditions can be checked individually By a

wherey is a quantifier-free boolean formula. We assume w.l.0.g. aglgorithm, and so can both checks in sequence.

sume that formulab is constructed using boolean connectives/
and—. By Vy, := {v1,...,v,} we denote the set of boolean vari-
ables in formula). We fix the database

D :={(a,false 0), (a, true, 1), (a, tv, 0), (a,tv, 1)}
and encode the formula as
Py := ((a,tv,?V1) AND ... AND (a,tv, ?V;,)) FILTER f (%)),
where?V4, ..., 7V, represent the boolean variables . . ., v,
and functionf (¢) generates a SPARQL condition that precisely

mirrors the boolean formulg. Formally, functionf () is defined
recursively on the structure of as follows.

8The same result was proven in [26]. This lemma, however, was
developed independently from [26]. We informally published it
already one year earlier, in a same-named technical report.

Lemma 16(2)itis easy to see that € [P, AND P»]p iff xcan
be decomposed into two mappings ~ 2 such thaj, = pq U pe
andu: € [Pi]p andue € [P:]p. By assumption, both testing
w € [Pi]p andpus € [P2]p isin BF. Sincei > 1, we have
that>] D B = NP. Hence, we can guess a decomposition
= p1 U pe and check the two conditions one after the other. Itis
easy to see that the whole procedure iEn.

Lemma 16(3):The conditiony € [P FILTER R]p holds iff
p € [Pi]p (which can be tested i by assumption) and?
satisfies. (which can be tested in polynomial time). We have that
> D NP D PTIME for i > 1, so the procedure is iBY .0

Proof of Theorem 5

We are now ready to tackle Theorem 5. The completeness proof
divides into two parts, namely hardness and membership. We start
with the hardness part, which is a reduction from QBE& variant
of the QBF problem used in previous proofs where the number
of quantifier alternations is fixed. We formally define QBF

AND

OPT \.
SN N
/N,

i P
EVALUATION in ©F

ND

N

\>

nP
EVALUAWO\

EVALUATION in PTIME EVALUATION in S,

Figure 3: (a) AND-expression with Increased OPT-rank; (b) Associated Complexity Classesfor OPT-expressionsand Triple Patterns

QBF,: given a quantified boolean formula

:= Jz1Vaodzs . .. Qrptp as input, where is a
quantifier-free formula() := 3 if n is odd, and
Q :=Vif nis even: is the formula valid?

It is known that QBE is ©F’-complete forn > 1.

(Hardness)Recall that our goal is to show that fragmeft,,
is Einﬂ-hard. To prove this claim, we present a reduction from
QBF, ., to the EVALUATION problem for clas€ <, i.e. we en-
code a quantified boolean formula with- 1 quantifier alternations
by an& expression with ®T-rank < n. We distinguish two cases.
(1) Let@ := 3, so the quantified boolean formula is of the form

@ = JyoVr1Iy1 ... VT Iym .

Formulay has2m + 1 quantifier alternations, so we need to
find an€ <2,, encoding for this expressions. We rewrjténto an
equivalent formulap := ¢1 V 2, Where

w1 :=Ve13yr .. Ve, Iym (P A y0)1 and
2 ;:Vl’layl e VZCmElym (w A “y())-

According to Lemma 15 there is a fixed documéhand&<s,,
encodingsenc(p1) and enc(p2) (for o1 and 2, respectively)
s.t.[enc(e1)] b ([enc(p2)]p) contains the mapping := {?Bo —
1}iff 1 (p2) is valid. Itis easy to see that the expression(y) :=
enc(p1) UNION enc(p2) then containg: if and only if ¢1 or 2
is valid, i.e. iff o := @1 V @2 is valid. Given that botrenc(y1)
and enc(yp2) are E<a,, expressions, it follows thatnc(yp) =
enc(p1) UNION enc(yp2) is in E<am, Which completes part (1).

(2) Let@ :=V, so the quantified boolean formula is of the form

= JxoVyodr1Ve: ... Iz Yym .

¢ has2m + 2 quantifier alternations, so we need to find a reduc-
tion to thef<2,,+1 fragment. We eliminate the out@rquantifier
by rewritingp asy := @1 V @2, where

w1 :=VyoIx1Vy1 . .. Jxm Vym (¥ A yo), and
w2 :=Vyo3x1Vy1 . .. ITmYym (Y A —y0).

Abstracting from the details of the inner formula, bath and
2 are of the form

¢ = VYyoIdx1Vy1 ... 3z Vym ',

wherev’ is a quantifier-free boolean formula. We proceed as
follows: we show how to (*) encode’ by an€<s,,,+1 expression
enc(y’) that, when evaluated on a fixed documentyields a fixed
mappingu iff ¢’ is valid. This is sufficient, because then expression
enc(p1) UNION enc(yp2) is ané<amy1 encoding that containg
iff the original formulay := @1 V ¢ is valid. We first rewritep':

@ =VyoIr1Vy1 . .. Jzm Vym)’
= ﬁEIyOleElyl . meﬂymﬂ//
= —(p] V ¥5), where
O :=V213Yy1 .. V2w Tym (=" A yo), and
05 =V213Y1 . . . Y0 Y (—0" A —g0).

According to Lemma 15, each; can be encoded by afx o,
expressionsnc(;) such that, on the fixed databaBegiven there,
(1) p := {?Bo — 1} € [¢5]p iff ¢} is valid and (2) ify} is not
valid, then all mappinggenc(y;)]p bind both variable? A; and
?Bo to 1. It follows that (1) 1 € enc(p}) UNION enc(yb) iff
01 Vo5 and (2') all mappingg € enc(¢’) UNION enc(e5) bind
both 7A; and?By to 1 iff —(] V ¢5). Now consider the ex-
pressionQ := ((a, false,?A1) OPT (enc(¢}) UNION enc(¢5)).
From claims (1') and (2') it follows that, := {?4; — 0} €
[Qlp iff =(¢1 V ¢5). Now recall thaty’ = — (7 V ¢5) holds,
hencey’ € [Q]p iff ¢ is valid. We know that bottenc(y}) and
enc(ph) are€<a,, expressions, sQ € E<omt1. Thisimplies that
claim (*) holds and completes the hardness part of the proof.

(Membership)Ve next prove membership 6&,, expressions in
E,’fﬂ by induction on the ®T-rank. Let us assume that for each
E<n, expressionif € No) EVALUATION is in % ;. As stated in
Theorem 1(2), EALUATION is ©¥ = NP-complete for ®T-free
expressions (i.e£<o), so the hypothesis holds for the basic case.
In the induction step we increase the ©rank fromn ton + 1 and
show that, for the resulting<,+1 expression, the ¥ALUATION
problem can be solved Ef+2. We consider an expressighwith
rank(Q) := n + 1 and distinguish four cases.

(1) Assume thaf) := P, OPT P». By assumption@ € E<n41
and from the definition of the @r-rank (cf. Definition 16) it fol-
lows that bothP; and P are in€<,,. Hence, by induction hypoth-
esis, bothP; and P, can be evaluated iEffH. By semantics, we
have thaﬂIP1 OPTPQHD = [[Pl AND PQHD U ([[Pﬂ]p \ HPQHD),
sop € [P OPT P p iff it is generated by (i)[P1 AND P:]p
or (i) [P]p \ [P=]p. According to Lemma 16(2), condition (i)
can be checked ikl ;. The more interesting part is to check if
(i) holds. Applying the semantics of operatyr this check can
be formulated ag” := C1 A C2, whereC := p € [Pi]p and
Cy := -3y’ € [P]p : p and i’ are compatible. By induc-
tion hypothesis(; can be checked i&Z, ;. We now argue that
—Co =3y’ € [P:]p : pand ' are compatible can be evaluated
in XX, ;: we can guess a mapping (becausest,; D NP) and
then check ifu € [P:]p (which, by application of the induction
hypothesis, can be done by 4 -algorithm), and test if: and’
are compatible (in polynomial time). Checking the inverse prob-
lem, i.e. if C> holds, is then possible X’ ; = TI5 ;. Sum-
marizing cases (i) and (i) we observe thatXij,; and (i) 15
are both contained iEf+2. Therefore, the two checks in sequence
can be executed iRY, ,, i.e. the whole algorithm is iL% . This
completes case (1) of the induction.

(2) Assume thaf) := P» AND P». Figure 3(a) shows the struc-
ture of a sample AD expression, where the symbols represent
non-COPT operators (i.e. AD, UNION, or FLTER), andt¢ stands
for triple patterns. Expressio has an arbitrary number of &
subexpressions (which might, of course, contamTr@Gubexpres-
sions themselves). Each of these subexpressions hasabk

< n + 1. Using the same argumentation as in case (1), the eval-

uation problem for all of them is irE§+2. Further, each leaf

node of the tree carries a triple pattern, which can be evaluated

in PTIME C XL, ,. Figure 3(b) illustrates the tree that is obtained
when replacing all ®T-expressions and triple patterns by the com-
plexity of their EVALUATION problem. This simplified tree is now
OpT-free, i.e. carries only operatorsnd, UNION, and RLTER.

We then proceed as follows. We apply Lemma 16(1)-(3) repeat-

edly, folding the remaining AD, UNION, and RLTER subexpres-

sions bottom up. The lemma guarantees that these folding oper-
ations do not increase the complexity class, so it follows that the

EVALUATION problem falls ianfJr2 for the whole expression.

Finally, it is easily verified that the two remaining cases, namely

(3) @ := P1 UNION P and (4)Q := P, FILTER R follow by
analogical arguments as used in case{2).

B.6 Proof of Theorem 6

Before proving the theorem, we show the following:

LEMMA 17. LetC be a complexity class anfl a class of ex-
pressions. If FALUATION is C-complete forF” and C2O NP then
EVALUATION is C-complete forr™™. m|

Proof of Lemma 17

Let F' be a fragment for which the\BLUATION problem is C-
complete, where C is a complexity class such thabQ\NP. We
show that, for a query) € F”, documentD, and mappingu,
testing ifu € [Q] b is contained in C (C-hardness follows trivially
from C-completeness of fragme#t). By definition, each query
in F™ is of the form@ := SELECTs(Q'), whereS C Vis a
finite set of variables an@’ € F. According to the semantics of
SELECT, we have that: € [Q] p iff there is a mapping.’ 2 pin
[Q']p such thatrs ({u'}) = {11}. We observe that the domain of
candidate mappings is bounded by the set of variables@i and
dom(D). Hence, we can first guess a mappjrigD 1 (recall that
we are at least in NP) and subsequently cheetsif{n'}) = {1}
(in polynomial time) andu’ € [Q']p (using a C-algorithm, by
assumption). This completes the praof.

Proof of Theorem 6
Theorem 6(1)Follows from Lemma 17 and Corollary 2.
Theorem 6(2)Follows from Lemma 17 and Theorem 5.
Theorem 6(3):NP-completeness for fragmesi/™ follows di-

A™. The subsequent proof was inspired by the reduction @fr3S
to the evaluation problem for conjunctive queries in [10]. It nicely
illustrates the relation betweenn®-only queries and conjunctive
queries. We start with a formal definition of the 8Sproblem:

3SAT: given a boolean formula := C; A --- A Cy in
conjunctive normal form as input, where each claGsés a
disjunction of exactly three literals: is the formulesatisfiable

Lety := Ci A --- A C, be a boolean formula in CNF, where
eachC; is of the formC; := [;1 V l;2 V l;3 and thel;; are literals.
For our encoding we use the fixed database

where we assume tha@t1 € U are URIs. Further let, =
{z1,...zm} denote the set of variables occurring in formula
We define the AiD-only expression

Pl:: (L){hLIQ: T3)AND AND(:117 :L27 :(LSL
AND (?7X1,¢,7X1) AND ... AND (?Xm, ¢, 7 X m)
AND (0,¢, 7A),

Whereij =7X5 if lij = Tk, andej :?yk if ll‘j = Tk.

Finally, defineP := SELECT24(P’). Itis easily verified that
w:={?Aw— 1} € [P]p if and only if formula is satisfiable.

Theorem 6(4):We prove membership in RWE for fragment
FU™, which implies PTME-membership fotF™ andi/™. Let D
be an RDF databasg, be a mapping, and) := SELECTs(Q’)
be anFU™ expression. We show that there is aiRE-algorithm
that checks ifu € [Q]p. Letts, ..., t, be all triple patterns
occurring inQ. Our strategy is as follows: we process triple pattern
by triple pattern and check for eaph € [t;] p if the following two
conditions hold: (1) all filter conditions that are defined on top; of
in Q' satisfyu’ and (2)ws({x'}) = {u}. We returntrue if there
is a mapping that satisfies both conditiofaseotherwise.

The idea behind this algorithm is that condition (1) implies that
i1 € [Q']p, while (2) asserts that the top-level projection gener-
ates mapping: from p'. It is easy to show that € [Q]p if and
only if there is some € [n] such thaf]t;] p contains a mapping
1 that satisfies both conditions, and clearly our algorithm (which
checks all candidates) would find such a mapping, if it exists. The
number of triple patterns is linear to the size of the query, the num-
ber of mappings in eadfi;] » is linear to the size ab (where each
mapping is of bounded size); further, conditions (1) and (2) can be
checked in PTME, so the algorithm is in PiME.O

rectly from Lemma 17 and Theorem 2 and NP-completeness for C, PROOFS OF ALGEBRAIC RESULTS

AFUT follows from Lemma 17 and Theorem 1. Therefore, it re-
mains to show that fragment$™ and AF™ are NP-complete.

First, we show that ZaLuATION for AF"-queries is contained
in NP (membership ford™ queries then follows). By definition,
each query inAF™ is of the form@Q := SELECTs(Q’), where
S C V is a finite set of variables an@’ is an AF expression.
We fix a documentD and a mapping:. To prove membership,
we follow the approach taken in proof of Lemma 17 and eliminate
the SELECT-clause. More precisely, we guess a mappifig>
wst.ms({u'}) = pand check ify’ € [Q']p (cf. the proof of

C.1 Proof of Lemma?2

We prove the lemma by induction on the structure%éxpres-
sions, thereby exploiting the structural constraints imposed by Def-
inition 8. The basic case id := [t]p. By semantics (see Def-
inition 4), all mappings in the result then bind exactly the same
set of variables, and consequently the values of each two distinct
mappings must differ in at least one variable, which makes them
incompatible. We assume that evetyc A has the incompatibil-

Lemma 17). The size of the mapping to be guessed is bounded,ity Property and distinguish six cases.

and it is easy to see that the resulting algorithm is in NP.
To prove hardness for both classes we reducer3& prototyp-
ical NP-complete problem, to thevELUATION problem for class

(1)£orls,jder an expressioh := A; X As. By Definition 8,
both A,, A, are A expressions and by induction hypothesis both
have the incompatibility property. We observe that each mapping

JIRS A is of the formpy = p1 U pe with g1 € AL, M2 € As,
andu: ~ pe (by semantics of). We fix 1 and show that each
mappingy’ € A that is distinct fromy is incompatible. Any dis-
tinct mappingy’ € A is of the form) U b with 1) € A,

1o € As, and it holds thap} is different fromyu; or thatpsb is
different from p» (becauseu is distinct fromy'). Let us assume
w.l.0.g. thaty] is different fromp;. We know thatd; € A, so it
holds thatu; is mcompatlble wnthu1 It follows thaty = p1 U e

is incompatible withy' =) U b, sincepl andu’1 disagree in
the value of at least one variable. (2) Lét:= A, \ A, where
A; € A, so each two distinct mappings i, are palrW|se in-
compatlble by induction hypothesis. By semantlcs\ofA is a
subset ofAl, so the incompatibility property trivially holds for
A. 3) Let A := A, ™ Ay, where bothA; and A, are A ex-
pressmns We rewrite the left outer Jom accordlng to its seman-
tics: A = A3 M Ay, = (A; X Ay) U (4; \ Az). Following
the argumentation in cases (1) and (2), the incompatibility prop-
erty holds for both subexpressiofiss 1= A; X A, andﬁ\

Ay \ As, so it suffices to show that the mapplngsAsh are pair-
wise incompatible to those if, . First note that4\ is a subset of
A;. Further, by semantics egch mappﬂ% A is of the form
wo= p1 U pusg, whereul € A, M2 € Ao, andul ~ 2. Ap-
plying the induction hypothesis, we conclude that each mapping
in A; and hence each mapping € Z\ is (3a) either incompat-
ible with ;7 or (3b) identical tou;. (3a) If 4} is incompatible
with 1, then it follows thatu} is incompatible withy, U pe = p
and we are done. (3b) Let; = 1. By assumption, mapping
w2 (which is generated byig) is compatible withy, = pf. We
conclude thatd, \ A, does not generatg;, which is a contra-
diction (i.e., assumptlon (3b) was |nvaI|d) (4) Lat:= O'R(A1)
WhereA1 c A. By semantics ob, Ais a subset ofAl, so the
property trivially follows by application of the induction hypothe-
sis (5) LetA := ﬂs(A1) where4; € A and by Definition 8 it
holds that (5a)5 2 pVars(Al) or (5b)S C cVars(Al). (5a) If

S 2 pVars(/Tl) then, according to Proposition 2, the projection
maintains all variables that might occur in result mappingsgm
equivalent toA;. The claim then follows by induction hypothesis.
Concerning case (5b§ C cVars(;ﬁ) it follows from Proposi-
tion 1 that each result mapping produced by expres&dninds all
variables inS C cVars(;ﬁ), and consequently all result mappings

bind exactly the same set of variables. Recalling that we assume

set semantics, we conclude that two distinct mappings differ in
the value of at least one variable, which makes them incompatible.
(6) LetA := A1 UAs, whereAl, Az areA expressmns and it holds
that p Vars(A;) cVars(Ay) pVars(Az) cVars(Ay).
From Proposmons 1 and 2 it follows that each two mappings gen-
erated byA1 UAs bind exactly the same set of variables. Following

so each pair of distinct mappingsjﬁ is incompatible. It follows
that; = pe and, consequently;; U pe = w1, Which is gener-
ated byﬁ, and hence by the right side expressiea: Consider a
mappingu € A. Chooseu for both the left and right expression
in A X A. By assumptiony U 1 = p is contained in the left side
expression of the equation, which completes the proof.

(L/I-Zl;;n). Let A € A. We rewrite the left side expression
schematically:

ANMA = (AKA)U(A\A) [semantics]
= (A X A) un [(Inv)]
=AXA [semantics]
= A [(J1dem)]

(Uldem) Follows trivially from the Definition of operatoy. O

Rulesin Group 11

EquivalenceqUAss) (JAss) (UComm) (JComm) (JUDistL),
and(LUDistR)have been shown in [24] in Proposition 1 (the results
there are stated at syntactic level and easily carry over to SPARQL
algebra).(JUDistR)follows from (JComm)and(JUDistL).

(MUDistR). We show that both directions of the equation hold.
= Consider amapping € (A1UA5)\ As. Hencey is contained
in A; or in A5 and there is no compatible mappingdn. If €
A then the right side subexpressidn \ As generateg., in the
other cased, \ Az generates does=: Consider a mapping in
(A1 \Ag) U (A2 \ Ag) Thenu (S (Al \ A3) oru e (A2 U Ag)

In the first casey is contained inA; and there is no compatible
mapping inAs. Clearly, . is then also contained id; U A2 and
(A1 U A2) \ As. The second case is symmetrical.

Rulesin Group |11

We introduce some notation. Given a mappinand variable set
S C V, we defineu s as the mapping obtained by projecting for
the variablesS in i, e.9.{?z — 1,?y — 2} (74} = {7z — 1}.
Further, given two mappings:, 2 and a variabl€z we say that
1 and uo agree on?z iff either it holds that?z € dom(u1) N
dom(p2) A pa (Tx) = pa(?z) or ?z & dom(pi) U dom(pe).

(PBasel) Follows from the definition of the projection operator
and the observation thatVars(A) extracts all variables that are
potentially bound in any result mapping, as stated in Proposition 2.

(PBasell) For each set of variableS™ it holds thatS = (S N
S*)U (S '\ S*), so we can rewrite the left side of the equation
asmsmpv,m(A))U(s\pVm(A»(A) This shows that, compared to
the right side expression of the equation, the left side projection
differs in that it additionally considers variables$h\ p Vars(A).
However, as stated in Proposition 2, for each mappititat is gen-
erated byA we have thatlom (i) C pVars(A), soS \ pVars(A)

the argumentation in case (5b), two distinct mapping then disagreecontains only variables that are unbound in each result mapping

in at least one variable and thus are incompatible.
C.2 Proofs Equivalences Figure 2
Rulesin Group |

(Uldem) Follows trivially from the Definition of operatap.

(JIdem). Let A be anA. expression. We show that both direc-
tions of the equivalence holek: Consider a mapping € A X A.
Theny = p1Upe wherepu, us € Zandm ~ p2. From Lemma 2
we know that eact expression has the incompatibility property,

and thus can be dropped without changing the semantics.

(PFPush) Follows from the semantics of operatoand opera-
tor o in Definition 4. The crucial observation is that filtering leaves
mappings unchanged, and — if we do not project away variables that
are required to evaluate the filter (which is implicit by the equation)
— then preprojection does not change the semantics.

(PMerge) Follows trivially from the definition of operator.

(PUPush) Follows easily from the definition of the projection
and the union operator. We omit the details.

(PJPush) =: We show(Claim1)that, for each mapping that
is generated by the left side subexpressibn X A,, there is a
mappingy’ generated by the right side subexpressign(A;) X
msr(A2) such that for all?z € S eitherp(?z) = u/(?z) holds
or 7z is unbound in both: and . It is easy to see that, if this

follows that there is a mapping. € A such thafus O pb andpus
agrees withu5 on all variables in8” := pVars(A1)NpVars(Asz).
Taking both observations together, we conclude that- p», be-
cause all shared variables in-betweenand 2 are contained in
pVars(A1) N pVars(A2) and each of these variables either maps

claim holds, then the right side generates all mappings that are gen-to the same value ip1 (u2) and uy (u5) or is unbound in both.
erated by the left side: the mapping that is generated by the left This is a contradiction to the initial claim that is incompatible

side expression of the equation is obtained fromhen projecting
for variables inS, and this mapping is also generated by the right
side expression when projecting f8rin 1. So let us consider a
mappingu € A; X As. By semantics of<, p is of the form
= p1 U pa, Wherep; € Ay, po € Aa, andur ~ po holds. We
observe that, on the right sides: (A1) then generate a mapping
1y C u1, obtained fromu; € A; by projecting on the variables';
similarly, s/ (A2) generates a mapping, C yu2, obtained from
12 by projecting on the variableS’. Thenp} (u5) agrees with
w1 (u2) on variables inS (where “agrees” means that they either

with each mapping im2, so assumption (b) was invalid.

<: Assume thap' € ms(rs/ (A1) \ 75~ (A2)). We show that’
is also generated by the left side of the equivalence. By semantics,
1 is obtained from a mapping; € ws/ (A1) that is incompatible
with each mapping inrs (Az2) by projecting on the variables,
i.e. ' = pys. First observe that the left side subexpressiin
generates a mapping O u} that agrees with} on all variables
in S’. From the observation thaf, is incompatible with each map-
ping in w5~ (A2) we conclude that alsp; 2 p} is incompatible
with each mapping i (which contains only mappings of the

map the variable to the same value or the variable is unbound in form ps O p5 for someus, € wg/(A2)). Hence, also the left side

both mappings), becausg D S holds and therefore no variables
in S are projected away when computing: (A1) andms/ (A2).

It is easy to see that; ~ pus — pi ~ ph, so the right side ex-
pressionug (A1) X g (A2) generates’ := py U ps. From the
observation thati, (u2) agrees with mapping (u5) on all vari-
ables inS it follows thaty’ agrees with: on all variables inS and
we conclude thafClaim1) holds. <: We show(Claim2)that, for
each mapping:’ that is generated by the right side subexpression
mgr (A1) W mgr (A2) there is a mapping € A; X A, such that
forall 7z € S eitherp(?z) = p/(?z) or ?x is unbound in bothu
andy’. Analogously to the other direction, it then follows immedi-

ately that all mappings generated by the right side also are gener- — ¢ (A; X As) Umg(A; \ Az)

expressiond; \ A» generateg. Fromu; 2) and the obser-
vation thati,; andy agree on all variables if" we conclude that
p1 and) also agree on the variables $h C S’. Consequently,
pis = phys = p' and we conclude that the left side expression
generates mapping . This completes the proof.

(PLPush) The following rewriting proves the claim, where we
use the shortcuts’ := SU (pVars(A1)NpVars(Az)) andS” :=
pVars(A1) N pVars(Asz).

ated by the left side of the equation. So let us consider a mapping = wg(mwg (A1) X 75/ (A2))U

u' € mgr (A1) Mg (Az). Theny' is of the formpu’ := pf U b,
wherep)] € msr (A1), usy € s (Az2), anduy ~ usy holds. Assume
thaty is obtained from mapping: € A, by projecting onS’, and
similarly assume thats, is obtained fromuz € As by projecting on
S’. We distinguish two cases: (a)ifi andu. are compatible, then
1= p1Ups is the desired mapping that agrees with= p} U5
on variables inS, because:; O p} andus O ph holds. Other-
wise, (b) if 1 and s are incompatible this means there is a vari-
able?z € dom(p1)Ndom(p2) suchthaj (?z) # pz(?z). From
Proposition 2 we know th&t: € pVars(A1)NpVars(Asz), which
implies that?z € S" 2 pVars(A1) N pVars(Az). Hence,?z is
bound iny} and inpb and it follows thatu) (?z) # wb(?x), which
contradicts the assumption that ~ w5 (i.e., assumption (b) was
invalid). This completes the proof.

(PMPush) =: Let u € ws(A1 \ A2). By semanticsy is
obtained from some mapping. € A; that is incompatible with
each mapping iM2, by projecting on the variableS, i.e. p =
11)s. We show thaj is also generated by the right side expression
ws(ms (A1) \ s (A2)). First observe thats/ (A1) generates a
mappingu; C p1 that agrees withu; on all variables inS and also
on all variables i Vars(A1) Np Vars(Az), becausel, generates
w1 andS’ := SU(pVars(A1) NpVars(Az2)). We distinguish two
cases. (a) Assume that is incompatible with each mapping gen-
erated byrgs (Az). Then alsorgs (A1) \ msr (A2) generateg.

Going one step further, we observe that the whole expression at the

right side (i.e., including the outermost projection Kyrgenerates
the mappingu;|s. We know thatu; agrees withu; on all vari-
ablesinS, souy|s = p1js = p. Hence, the right side generages
(b) Assume there is a mapping € mg-(As) that is compatible
with 3, i.e. forall?x € dom(uy)Ndom(ps) = ph (7z) = ps(?x).
From before we know that; 2O) and thatu; agrees withu} on
all variables inp Vars(A1) N pVars(Az2). Fromuy € msir(A2) it

Ws(Al X AQ)
=7ms((A1 XM A2) U (A1 \ A2)) [semantics]
[(PUPush)
7r5(7r5/(A1) \ TI'S//(AQ)) [(PIPushXPMPush)
B 7TS(7TS’ (Al) X g (AQ))U
mg(ms (A1) \ msr (A2)) [+]
=ms((msr (A1) M mg(A2))U
(mr (A1) \ 7/ (A2))) [(PUPush)
=ng(mg (A1) K g (A2)) [semantics]

Most interesting is step, where we replace&’ by S”. This
rewriting step is justified by the equivalence

ms(msr (A1) \ msi (A2)) = ms(msr (Ar) \ msr (Az2)).

The idea behind the latter rule is the following. First note that
S’ can be written a$’ = S U (S \ (pVars(A1) U pVars(Az)),
which shows thas’ andS” differ only by variables contained ifi
but not inp Vars(A1) N pVars(Az). These variables are harmless
because they cannot induce incompatibility betweerdthand the
As-part on either side of the equivalence, as they occur at most in
one of both mapping sets. We omit the technical details.

Group IV
(FDecompl) Follows from Lemma 1(1) in [24].
(FDecompll) Follows from Lemma 1(2) in [24].
(FReord) Follows from(FDecompljand the commutativity of.
(FBndl). Follows from Proposition 1.
(FBndll). Follows from Proposition 2.
(FBndlll). Follows from Proposition 1.

(FBndIV). Follows from Proposition ZJ

Group V
(FUPush) Follows from Proposition 1(5) in [24].

(FMPush) =: Letu € or(A1 \ A2). By semanticsy € Ay,
there is nouz € A, compatible withu:, andp = R. From these
preconditions it follows immediately that € or(A1) \ A2. <:
Letp € or(A1) \ A2. Thenp € Ay, p = R, and there is no
compatible mapping im,. Clearly, then alsq. € A; \ A2 and
JIAS] O'R(A1 \AQ)

(FIPush) =: Letu € or(A1 X As). By semanticsy = R
and we know thaj is of the formu = p1 U po, whereu, € Ay,
p2 € Ao, andpui ~ peo. Further, by assumption each variable
?z € vars(R) is (i) contained incVars(A1) or (i) not contained
in pVars(Az) (or both). It suffices to show thé€laim1)u, = R
holds, because this implies that the right side genepatd<st us,
for the sake of contradiction, assume that~= R. Now consider

the semantics of filter expressions in Definition 10. and recall that

u1 C p. Given thaty = R, it is clear thatu; does not satisfy
R if and only if there is one or mor@z € wars(R) such that
?z € dom(p), 7z ¢ dom(p1) and?z causes the filter to evaluate
to false. We now exploit the constraints (i) and (ii) that are imposed
on the variables inars(R): if variable 7z satisfies constraint (i),
then it follows from Proposition 1 thétz € dom(u1), which is

a contradiction; otherwise, ifx satisfies constraint (ii) we know
from Proposition 2 thatz ¢ dom(u2). Given that’z € dom(u),
this implies that’z must be contained idom (p1), which is again
a contradiction. We conclude that = R, hence(Claim1)holds.
<:Letu € or(A1) X Az, sopis of the formu = 1 Upz, where
u1 € A1, p2 € Ag, andus | R. Further, by assumption each
variable?z € wars(R) is (i) contained inc Vars(A1) or (ii) not
contained irp Vars(Az) (or both). It suffices to show théElaim2)

1 = R holds, because this implies that the left side generates
Let us, for the sake of contradiction, assume fh& R. Consider
the semantics of filter expressions in Definition 10 and recall that
u 2 pi. Given thatu: = R, we can easily derive that does not
satisfyR if and only if there is one or morer € vars(R) such that
?z € dom(p), 7z ¢ dom(p1) and?z causes the filter to evaluate
to false. The rest is analogous to the proof of direction

(FLPush) We rewrite the expression:

O'R(A1 ™ Ag)
or((A1 M A2) U (A1 \ A2)) [semantics]
O'R(Al X A2) U O'R(A1 \ Az) [(FUPush]

(cr(A1) X A2) U (cr(A1) \ A2) [(FIPush)FMPush]
or(A1) N Ay [semantics]

The rewriting proves the equivalence.

Group VI

(MReord) We fix a mapping: and show that it is contained in
the left side expression if and only if it is contained in the right
side expression. First observe thatifs not contained i, then
it is neither contained in the right side nor in the left side of the
expressions (both are subsetsAaf). So let us assume thate A;.

We distinguish three cases. Case (1): consider a mappingA:

and assume there is a compatible mappinglin Thenyu is not
contained in4; \ Az, and also not ifA; \ A2) \ As, which by
definition is a subset of the former. Now consider the right-hand
side of the equation and let us assume that A, \ Az (otherwise

we are done). Then, as there is a compatible mappingitoA,,

the expressiop € (A; \ As) \ Az will not containy. Case (2):
The case ofu € A; being compatible with any mapping from
As is symmetrical to (2). Case (3): Let € A; be a mapping

that is not compatible with any mapping i, and As. Then both
(A1 \ A2) \ As on the left side andA; \ As) \ A2 on the right
side containu. In all casesy: is contained in the right side exactly
if it is contained in the left side.

(MMUCorr). We show both directions of the equivalence::
Let p € (A1 \ A2) \ As. Thenp € A, and there is neither a
compatible mappingi. € As nor a compatible mappings €
As. Then bothA; and A3 contain only incompatible mappings,
and clearlyA, U A3 contains only incompatible mappings. Hence,
the right sideA; \ (A2 U As) producesu. <: Letu € A; \
(A2 U Ag). Thenp € A, and there is no compatible mapping in
Az U Az, which means that there is neither a compatible mapping
in A, nor in As. It follows thatA; \ A containsu (as there is no
compatible mapping iM2 andp € A;). From the fact that there
is no compatible mapping iAs, we deduce: € (A; \ A2) \ As.

(MJ). See Lemma 3(2) in [24].

(LJ). Let A;, A, be A-expressions. The following sequence of
rewriting steps proves the equivalence.

AAXA

= (A1 X Ag) U (A1 \ A2) [by semantics]

= (A1 M (A1 M Ag)) U (A1 \ (A1 X Az)) [(JIdem),(JAss MI)]

= (A1 ™M (A X Ag)) [by semantics]

(FLBndI).Let A;, A, be A expressions anth: € cVars(4z) \
pVars(A1) be a variable, which implies th8t: € c¢Vars(A; X
Ag) and?x & pVars(A: \ A2). We transform the left side expres-
sion into the right side expression:

T —bnd(?z) (Al N A2)

= 0 pnd(ra) (A1 X A2) U (A1 \ A2)) [semantics]
= 0pnd(22) (A1 X A2) Uo_p,4022)(A1\ A2) [(FUPush]
=0U 0o ppa(ra) (A1 \ A2) [(FBndIIN)]
= O pnd(22) (A1 \ A2) [semantics]
= A1\ A2 [(FBndIV)

(FLBndlIl).By assumptioffz € c¢Vars(Az2)\p Vars(A1), which
implies that?x ¢ pVars(A; \ A2) and?z € cVars(Ar M Aj).
The following step-by-step rewriting proves the equivalence.

Thnd(re) (A1 M Az)

= Opna(ra) (A1 X A2) U (A; \ A2)) [semantics]
= Opnd(ra) (A1 X A2) U 0y 4(72) (A1 \ A2) [(FUPush]
= Opnd(ra) (A1 M A2) U D [(FBndII)]

= Opnd(ra) (A1 M Az) [semantics]
= Ay M Ag [(FBndI) O

C.3 Proof of Lemma3

Proof of Lemma 3(1)Trivial (by counterexample).

Proof of Lemma 3(2)We provide counterexamples that rule out
distributivity of operatorsiX and\ over U, all of which are de-
signed for the fixed databage:= {(0,¢,1)}:

° Equivalence41 \ (A2 U A3) = (A1 \Ag) (A
not hold, as witnessed by expressiofis := [
Ag = [[(?a, c, 1)]][), andAs := [[(0, c, ?b)ﬂD

e Equivalenced; ™ (A2 U Az) = (A1 X Az) U (A1 N As)
does not hold, as witnessed by expressidns= [(0, ¢, 7a)] b,
Ag :=[(?a,c,1)]p,andAs := [(0,¢,?b)] p.

Proof of Lemma 3(3)We provide counterexamples for all op-
erator constellations that are listed in the lemma. As before, the
counterexamples are designed for the dataliase- {(0,¢, 1)}.

We start with invalid distributivity rules over operatai

\ As) does
0,¢,7%a)]p,

(

e Equivalenced;U(As X Az) = (A1UA2) X (A1UA3) does
not hold, as witnessed by expressiofis := [(?a, ¢, 1)]p,
Ag = [[(?b, c, 1)HD, andAs := [[(0, c, ?b)ﬂD

° Equivalence(A1 X Ag) UAs = (Al U As) X (A2 U A3)
does not hold (symmetrical to the previous one).

e Equivalenced; \ (A2 M A3z) = (A1 \ A2) X (A1 \ A3) does
not hold, as witnessed by expressiofis := [(?a, ¢, 1)]p,
Az :=[(?b,¢,1)]p, andAs := [(0, ¢, ?b)] p.

e Equivalencg A1 X As)\ Az = (A1 \ As) X (A2 \ As) does
not hold, as witnessed by expressiofis := [(0, ¢, 7a)]p,
Ay = [[(0, c, ?b)ﬂD, andAs := [[(?CL, c, I)HD-

° EqUiValence41 ™ (A2 X A3) = (Al ™ A2) X (Al ™ A3)
does not hold, as witnessed by expressidns= [(?a, ¢, 1)] b,
A2 = H(?b, c, l)ﬂD, andA3 = H(O, c, 7a)ﬂD.

e EquivalencéA; X Az) K Az = (A K Az) X (A N A3)
does not hold, as witnessed by expressidns= [[(0, ¢, ?a)] b,
Az :=[(0,¢,?b)]p, andAs := [(?a,c,1)]p.

Next, we provide counterexamples for distributivity rules over

e Equivalenced; U (A2 \ As) = (A1 UA2)\ (A1 U As) does
not hold, as witnessed by expressiofis := [(7a, ¢, 1)] b,
Az :=[(0,¢,?a)]p, andAs := [(?a,c,1)]p.

e Equivalencg A; \ A2) UAs = (A1 U As) \ (A2 U As) does
not hold (symmetrical to the previous one).

° EqUiValenCEAl X (A2 \Ag) = (Al X AQ) \ (Al X Ag)
does not hold, as witnessed by expressiéns= [(?a, ¢, 1)] b,
Az :=[(?b,¢,1)]p, andAs := [(0, ¢, ?a)] p.

e Equivalence(A; \ Az) X Az = (A X A3z) \ (A2 X As)
does not hold (symmetrical to the previous one).

e Equivalenced; X (As \ A3) = (41 K As) \ (A1 N A3)
does not hold, as witnessed by expressiéns= [(?a, ¢, 1)] b,
Ao = [[(?b, c, l)ﬂD, andA3 = [[(?b, c, l)ﬂD.

° Equivalence Al \ Ag) N Az = (Al ™ Ag) \ (A2 X A3)
does not hold, as witnessed by expressiéns= [(?a, ¢, 1)] b,
Ao = [[((N), c, 1)HD, andA3 = [[(0, c, 7b)ﬂp

Finally, we provide counterexamples for invalid rules over

e Equivalenced; U (A2 XN A3) = (A1 U Az) N (A1 U A3)
does not hold, as witnessed by expressidns= [(7a, ¢, 1)] b,
Az :=[(e,¢,¢)]p, andAs := [(?b,¢,1)] p.

e Equivalenceg(A; X As) U A3 = (A1 U Ag) K (A U As)
does not hold (symmetrical to the previous one).

e Equivalenced; X (A; X As) = (A1 X Az) K (A1 M Az)
does not hold, as witnessed by expressiéns= [(?a, ¢, 1)] b,
Az == [(?b,¢,1)]p, andAs := [(0, ¢, ?a)] p.

e Equivalencg A; X Ay) X Az = (A1 X Ag) N (Az M Asz)
does not hold (symmetrical to the previous one).

e Equivalenced; \ (A2 X Az) = (A1\ A2) N (A1\ As) does
not hold, as witnessed by expressiofis = [(7a, ¢, 1)] b,
Ag = [[(713, c, 1)]]D, andAg[[(O, c, ?a)]]D.

e Equivalencg Ay X A;)\ A3 = (A1\ As) X (A2\ As) does
not hold, as witnessed by expressiofis := [(?a, ¢, 1)]p,
Az :=[(?b,¢,1)]p, andAs := [(0, ¢, ?b)] b

The list of counterexamples is exhaustive.

C.4 Proof of Lemma4

(FEliml). We first introduce three functionem;, : M +— M,
addry e : M — M, andsubstzJ : M — M, which manipulate
mappings as described in the 'fJ(B)IIowing listing:

e remy, (1) removes?z from p (if it is bound), i.e. outputs map-
ping 1’ such thatdom(p') := dom(u) \ {?=} andy/(?a) :=
w(?a) for all 7a € dom(u').

e add,.—.(u) binds variable?z to ¢ in p, i.e. outputs mapping
' = pU{?x — c} (we will apply this function only if?z ¢
dom(u), soy’ is defined).

° subst;i () = remy.(add, .,.(22) (1)) replaces variabléx

by 7y in w (we will apply this function only if?z € dom(u)
and?y & dom(u)).

We fix documentD. To prove that(FEliml) holds, we show
that, for every expressiod built using operatord, U, and triple
patterndt] o (i.e., expressions as defined in r@iEliml)) the fol-
lowing five claims hold (abusing notation, we wrjtec A if p is
contained in the result of evaluating expressiban documenD).

(C1) Ifp e A, dom(p) D {7z, 2y}, andu(?z) = p(?y)
thenrems, (1) € Az—g

(C2) If p € Aand?z ¢ dom(u) thenp € AZL.

(C3) If p € Aand?z € dom(u), and?y & dom(u)
thensubst, (1) € AZL.

(C4) If p € A and?y ¢ dom(u) thenp € A.

(C5) If p € A and?y € dom(p)
theny €A oradd;,, .7y (1) €A or subst. (1) €A.
Ty

Before proving that these conditions hold for every expression
A build using only operator, U, and triple patterng¢]p, we
argue that the above five claims imp{fEliml). =: Let p €
Ts\ {72} (022=2y(A)). From the semantics of operatarsand o
it follows that 4 is obtained from some/’ O p sty € A,
72,7y € dom(y'), ' (?x) = p'(?y), and we\ 20y ({1'}) =
{u}. Given all these prerequisites, condition (C1) implies that
u" := reme, (1) is generated byl%. Observe that mapping’’
agrees withy' on all variables butz. Hencergs\ (2.1 ({1"}) =
ms\yza}({&'}) = {n}, which shows thaj: is generated by the
right side expressions\{yw}(A%). «: Consider a mapping €
Ts\(223 (A32). Then there is some mapping € A-% such that
w2 pandrg 2.3 ({#'}) = {©}. By assumption we have that
?x € cVars(A) and it is easily verified that this impliey <
cVars(AZ—Z). Hence, variabley is bound iny’ (according to
Proposition 1). Condition (C5) now implies that (ij € A, or
(ii) @addy (24 (1) € A, or (iii) subst. (1') € A holds. Con-

’y

cerning case (i), first observe that ¢ dom(y’), since all oc-
currences of’z have been replaced By in A% On the other
hand, we observe th&tw € cVars(A) —?z € dom(y'), so
we have a contradiction (i.e., assumption (i) was invalid). With
similar argumentation, we obtain a contradiction for case (iii), be-
cause?y € cVars(A) —?y € dom(p') for all " € A, but
obviously?y & dom(subst . (p')). Therefore, given that condi-
Ty

tion (C5) is valid by assumption, we conclude that caseu(ii):=
add;,. .. (7 (1) € Amusthold. Observe that’ (?z) = p''(?y)
by construction and that” differs from x’ only by an additional
binding for variable?z. Hence,.' passes filtetrs,—2, in the left
expression and froms, 7.y ({1 }) = ms\ 20y ({1'}) = {u} we
deduce that the expressiaR (7.} (0722=7,(A)) generateg..

Having shown that the five claims imply the equivalence, we
now prove them by structural inductions (over expressions built

using operatorsd, U and triple patterns of the forrft]p). We
leave the basic casé := [[¢{]p as an exercise to the reader and
assume that the induction hypothesis holds. In the induction step,
we distinguish two cases. (1) Let := A; X A,. Consider a
mappingy € A. Thenp is of the formu = p1 U pe where

nw € Ap andug € A, are compatible mappings. Observe that
A — A y . (1.1) To see why condition (C1) holds first
note that by |nduct|on hypothesis conditions (C1)-(C5) hold4er

As. Further assume thdbom(u) 2 {7z, 7y}, andu(?z) = u(?y)
(otherwise we are done). Itis stralghtforward to verlfy that con-
ditions (C1), (C2), and (C3) imply that, 79 X Ap iz ~ generates
remae,(p): the claim follows when dlstlngwshlng several cases,
covering the possible domains pf andu., and applying the in-
duction hypothesis; we omit the details. (1.2) To prove condi-
tion (C2) let us assume th8tw ¢ dom(u). This implies that
?x & dom(u1) and?z & dom(pz), Sopu1 andus are also gener-
ated byA; 2 and A ZI (by induction hypothesis and claim (C2)).
Hence,u is generated byl f,y Al— M Ay 2. (1.3) The proof
that condition (C3) holds follows by appllcatlon of the induction
hypothesis and conditions (C2), (C3). (1.4) Claim (C4) can be
shown by application of the induction hypothesis in combination
with condition (C4). (1.5) Claim (C5) can be shown by applica-
tion of the induction hypothesis and condltlons (C4), (C5). (2) Let
A= Ay U Ay and consequentlyh = A 2U A27 (2.1)
Assume thap € A, dom(u) D {7z, 7y} andu(?z) = u(?y).
Theny is generated byd; or by As. Let us w.l.o.g. assume that
u is generated byl;. By induction hypothesis;emn, (1) is gen-
erated byAl%, and consequently also b¥,. The proofs for the
remaining conditions (C2)-(C5) proceed analogously.

(FElimIl). Similar in idea to(FElimI).O
C.5 Proof of Theorem 7

We denote the corresponding equivalences for bag algebra with

superscriptt, e.g. write(Inv™) for rule (Inv) under bag semantics.
Before presenting the proofs, we introduce some additional prelim-

inaries. First we define a function that allows us to map expressions

from one algebra into same-structured expressions of the other al-
gebra.

DEFINITION 20 (FUNCTION S2b). LetA;, A> € A besetal-
gebra expression$, C V a set of variables, anf a filter condi-
tion. We define the bijective functios2b : A — A ™ recursively
on the structure of\-expression:

sob(tlo) =I5

$2b(A1 M Ay) —SQb(Al) M s2b(As2)

SQb(A1 @] Ag) = SQb(Al) @] SQb(AQ)

SQb(Al \Az) = S,Qb(A1) \ S,?b(Ag)

$2b(A1 ™K Az):=s2b(A1) K s2b(Asz)

Sgb(WS(1)) =ms(s2b(A1))

s2b(or(A1)) =or(s2b(A1)) o
We shall use the inverse of the function, denotee2is *(A™),

to transform a bag algebra expressibh € A into its set algebra
counterpart. Intuitively, the function reflects the close connection

between the set and bag semantics from Definitions 4 and 12, which

differ only in the translation for triple patterns. In particular, it
is easily verified that, for each SPARQL expression or qugry

it holds that[Q]}5 = s2b([Q]p) and [Q]p = 520~ ([Q]})
holds (when interpreting the results of functipfp and[.]5 as

LEMMA 18. The following claims hold.

1. Let A € A and D be an RDF document. Le&®2 denote
the mapping set obtained when evaluatingon D and let
(Q", m™) denote the mapping multi-set obtained when eval-
uatings2b(A) on D. Theny € Q < € Q.

. LetA* € A" andD be an RDF document. Lé2", m™)
denote the mapping multi-set obtained when evaluatifg
on D and letQ2 denote the mapping set obtained when evalu-
atings2b~*(AT)onD. Theny € Q1 < p € Q.]

Further, we will use some standard rewriting rules for sums.

PROPOSITION3 (SUM REWRITING RULES). Leta,, b,, de-
note expressions that depend on same be an expression that
does not depend op, andC, be a condition that depends an
The following rewritings are valid.

(S1) ZIEX)*ax =)*ZzEX Ay,

(S2) 2 tarexiop 2yetyrevic,) Ge * by

= 2 m)e (v) (X, V) Cpe AC, T G ¥ Dys

(S3) ZzeX Az + bz = ZzGX az + erX ba-

We refer to these equivalences(84) (S2) and(S3)

Lemma 18 shows that the result of evaluating set and bag algebra
expressions differs at most in the associated cardinality, so (given
that the rules we are going to prove hold for SPARQL set algebra) it
always suffices to show that, for a fixed mappjinthat is contained
in (by assumption both) the left and right side of the equivalence,
the associated left and right side cardinalities for the mapping co-
incide. We fix documenD. Further, given a SPARQL bag algebra
expressiom;” with some index, we denote by;, m;) the map-
ping multi-set obtained when evaluatig™ on D.

Group |

It has been shown in Example 10 ti(atldem)does not carry
over from set to bag semantics. To show nhﬂtdem) carries over
to SPARQL bag algebra we have to show tHat) A+ = A+ for
every expressmm+ € AT, Itis easily verified that the set and bag
semantics always coincide fort expressions and that the equiva-
lence holds under set semantics. Clearly, it holds thatd A+ €
A+, so the SPARQL bag algebra equivaler(c]d/d;_rﬁﬂ holds.
The argumentation ferﬁ\eEﬂ is the same. Finally, equivalence
(Inv) follows easily from Lemma 18 and the observation that the

equivalence holds under set semantics (the extracted mapping set
is empty, so there cannot be any differences in the multiplicity).

Group 11

(UAssh). Let AT, AT, AT € AT, PutA; := (A+uA+)uA3+,

= A} U (A+ U AF). Consider a mapping that is con-

tained both in the result of evaluating;” and A} on D. We ap-
ply the semantics of operatar for multi-set expressions (cf. Def-
inition 11) and rewrite the multiplicity that is associated wijth
for A" step-by-stepimi(u) = (mi(u) + ma(p) + ma(p) =
ma(p) + (ma(p) + ms(p)) = me(p).

(JAss"). Let AT, AT, AT ¢ AT. We define the shortcuts
A = (AT) AT) W AT, A = AT ® (AT X AT,

SPARQL algebra expressions rather than sets of mappings). GivenAj,, := AT X AJ, andAj,,, := A X AJ. Consider a map-
this connection, we can easily transfer Lemma 1, which relates the ping x that is contained in both the result of evaluatiti and A;' .

two semantics, into the context of SPARQL set and bag algebra:

We rewrite the left side multiplicityn; (x):

my ()= Z(umz,%)E{(uIm,ug)G(ﬂlmz XQ3) |1l Uni=p}
(misa2 (p1az) * ma(p3
z(."'lNQvMB)e{(H«TM2,M;)E(leg XQ3)\M’1‘M2UM§:H}(

(p1,m2)€{ (] ,pn5)E€(Q1 X Q2) |[n]Ups=H1m2}
(m1(p1) * ma(p2)) * m3(pus))

(51>
Z(M1m2,u3)€{(ﬂlmzqﬂs)E(QlNZXQ3)‘H1M2U“3 “}(
(p1,m2) {1} 13)€(R1 XQ2) [pTUps=p12}

(m1(p1) * ma(p2) x ms(ps)))

(52)
22 (rmazob3), (12 €L (e i) (5 3))E

((Q1pa2 X23) X (21 XQ2)) W] o Uni =pApT Ups = MIW}(

my (p1) * ma(p2) * ma(u3))

(1,m2,m3)€{(B] 15, 15)€(Q1 X Q2 X Q) |pfUpsUps=p}

(ma(p1) * ma(p2) * ms(ps))
((r1sp20a3),(p2,03)) EL((T 150q3), (15, 15)) €

(901 X 203) X (22 X)) |17 UptSpag =1ARE Ui =Hpeg }

my (p1) * ma(p2) * ma(u3))

(52)

Z(NlaMZNS)G{(Nlsl‘zmg)e(ﬂlXQ2'><13)“‘1U/"‘2><13 “}(
(p2,n3)€{(p3,15)€(Q2XQ3)|psUns =pons }
(ma(pr) * ma(pz) * ms(ps

(51}
Z(H17H2N3)€{(H1 KSpaz) €(Q1 X Qapa3) 1] Ungpgz = ”}(
mi(p) * Z(MZ’#S)G{(IJQ»#g)G(QQXQS)‘#zu'U‘B =h2m3}

(ma(p2) * m3(us)))

(p1,p20a3) E{ (1T 1 3q3) €(21 X Q2pa3) |pT Unpga=p}

(ma (p1) * mapas (p2s3))

= pr(p)

(UComnT). Let A}, AT € AT, PutAf := Af U Af and
Af = Af U AT Con3|der a mapping that is contained in both
the result of evaluatingtljr and A;". We rewritem; (1) stepwise:

mu(p) = ma(p) +ma(p) = ma(p) +ma(p) = me(p).

(IComnt). Let AT, A € A*t. PutA = A7 ® Af,
Af = A} X Af. Consider a mapping that is contained in
both the result of evaluating;,” and A;f. Applying the semantics
of operatorX we rewrite the left side multiplicity:

() =3y i) e { (5 i3) €(Q x) 1af U =1}
(ma(p1) * ma(p2
= D (i 1) €4 (115 7) (2 X1) 115 Upe] =1}
ma(p2) *ma(p
=myr (1)

(JUDIstR™) and(JUDistL™) follow by rewritings that are similar
in style to those presented in previous proofs.

(MUDIstR"). Let A7, AJ, A7 € AT. We define expressions
Al = (ATUAD\ AT, AT = (A*\A*)U(A*\A*) Ay =
A+ UAZ, A ;= A7 \ A7, andAj , == AJ \ A7 Considera
mappingu that is contained in the result of evaluatinﬁ andA;.
It is easily verified thain; (1) = miu2(p) = mi(p) + ma(p) =

my\s(p) + mays(p) = mr(p).
(LUDIstRY). Let AT, AT, AT € A*. Then

(AT UAT) X AT
= ((Af U A*) M AT U (AT UA)\ AT)

((AﬂL X A A+ X A*))

((A+ \ Ai A+ \ A*)) [(JUDIstR"), (MUDistR1)]
((A+ X A* (A+ \A

((A+ » Ai) u A+ \ Ai [(UAss'), (UCommt)]
(AJr x Ai AJr x A*) [semantics]O

Group 111

(PBasel). Let AT ¢ AT andS C V. Consider a mapping
1 contained in the result of evaluatingf” := 7, v, a+)us(A™)
andA; ;= AT. We rewritem; (1) stepwise:

(1) = 2o e {ut €Qlmpvaracanyus (Lut H={u}} TH+)

O, ey mly) = mu) = ma(),

where step(x) follows from the observation that equivalence
Tpvars(a=)us ({p}) = {u} holds if and only ifu} = p holds
(this claim follows easily from Proposition 2 and the definition of
operatorr) and the fact that, € Q. = Q by assumption.

(PBasell"). Let AT ¢ AT andS C V. Consider a mapping
w that is contained in the result of evaluatidg™ := ws(A™") and
Af = wsmme(AJr)(A*). We apply the semantics from Defini-
tion 11 and rewrite the (right side) multiplicity., (1):

M ()= 30y s €Qlmgp, yars (4 (Lt D=y TH+)
(*))
=2y e{uy eQlns ({uy P={u}} MK+
= mu(p),
where stef(x) follows from the semantics and Proposition 2.
(PFPush"). Similar in idea toPMPush).

(PMerge"). Let AT € AT andSi, S> C V. We defined;” :=
s, (s, (A7), At := 7s,ns, (A1), andAf, := 7s, (AT). Ac-
cording to Lemma 18, it suffices to show that for each mapping
that is contained i1f2; and2. it holds thatm; (u) = m,(u). We
rewrite the multiplicitym; (1) schematically:

my(p) =

Doy {ut €Qnalms, ({ut H={n}} Mr2(K+)
jp {1 EQmalms, (7 D={u}}
I
2o e{us eQlms, ((ug P={us 1} ML)
(52)
22 i) (1) E (U2,)|
!
s, ({nh D={u}Ams, ({ut H={w2 }3m(Hy)
(s) EQ(BY 1) E(Qr2, Q)]
!
- msy (s, ({u) ={udAms, (us H={uz 135)
1

p'y €{us €9l
msy (msy (% 1) ={uym (1)
(Y)Z#+€{u+ €Q|
75y sy (g 1) ={u)3m(H,)
= my(p),

where stef(x;) follows from the observation that mapping.
is uniquely determined by$ and(x2) follows directly from the
semantics of operator.

(PUPush). Let AT, AT € At andS C V. Consider a map-
ping x that is contained in the result of evaluatidg := WS(AT U
Af)and A} = ws(AT) U 7rs(A+). PutAf , := Af U Af,
Al = ms(A]), and AL, = 7s(AF). We apply the semantics

from Definition 11 and rewrite the multiplicityr; (1) step-by-step:

() = Xp, efu ealns((uy H={u}} M02(H4)

jp €{ut €ulms (ut H={ut} (M1 (Lt) +m2(p4))

iy etut euualms {ur H={u3y ™1 (1)) +
jre{ut ealms ({ur H={u}y M2(H+))

Dy eut € ns ({u P={uty M1 (1)) +
iy efur ealms(qur p=tury M2(k+))
= mz1(p) + maz(p)

= mp(p),

where stef{*) follows by semantics of operatar.

(PJPush). The rule follows from the following proposition.

PROPOSITION 4. Let A, AT ¢ AT andS’ ¢ V with 8’ D
pVars(AT) N pVars(A7). Then the following equivalence holds.

WS/L4T X A;j = WS’CAT) X W5/04;) (FJPUShZﬁ O

To see why Proposition 4 impligg&JPush) consider the origi-
nal equivalence, wher8’ := S U (pVars(A]) N pVars(AJ)).
Observe that, by constructios, 2 pVars(A}) N pVars(AJ).
We rewrite the left side ofFJPush)into the right side:

ms(AT M AT)
= ms(msr (A M AT))
= ﬂs(ﬂS/@41) X WS/L4;))

[(PMergeh)]
[(FIPush2")]

Given this rewriting, it remains to show th@JPush2") is valid.

We split this proof into two parts. First, we show that the map-

ping sets coincide. To this end, we show t(@iPush2") holds

for SPARQL set algebra (the result carries over to bag algebra by

Lemma 18). Letd;, A> € A andS’ D pVars(A1)NpVars(As).

22 u2) €T p3) €R X Qo Upis =pa4 }
(ma(p1) * ma(p2)
(52)
=2 (g (a2 €L (0 (0 15)) €R1502 X (21 X 23)|
mor (i D={uyAngupg=p } (M1 (p1) ¥ m2(p2))

(g (r1,m2)) E{(n7, (1T 13)) EQ1az X (21 X Q2)|
mgr (g U N={udAniups =py } (M (p1) * m2(u2))
2 (a1 u2) € (17 13) (01 X 02))|

mgr({ntupg H={p 3} (Ma(p1) x ma(p2))

)

= D () EL(0] 13 E(Q1 X 02))|
ror ({uf Humgr ({ug H={u}} (M1 (p1) * m2(p2))
(1 s12) €4 (1T 15) € (1 X n2) [{1} FU{u5 ={u} }
(ma(p1) * ma2(p2))

= my(p),

where(x) follows from S” 2 pVars(A1) N pVars(As).

(PMPush’). Let AT, AT € AT andS C V be a set of vari-
ables. Recall that by definitiofl := SU(pVarg A;)NpVarg Az))
andS” := pvargA;) N pVarg 4s). PutA; := ws(AT \ A7),
AT = ms(msr (AT) \ msn (A7), A, = AT\ A3, AT =
o (A, AL, = mgn (AT), AT, := At \ Af,, and fix doc-

I\ w2

= Consider a mapping generated by the left side expression umentD and a mapping: that is contained both if; and2,.

msr(A1 X As). Thenp is obtained from some mapping 2 u
st.ms({'}) = {p}. Further,u' is of the formp} U u5 where
wy andps are compatible mappings that are generatedibyand

As, respectively. We observe that the right side subexpressions

msr (A1) andrs: (As) then generate mapping§ C p4 andus C
15 that agree with:; and i5 on all variables inS’, respectively

(where “agree” means that each such variable is either bound to
the same value in the two mappings or unbound in both mappings).

Clearly,juy C py A py C py A py ~ psy — pf ~ s, so the right
side expression generates the mappifig= pf U p5 . Itis easily
verified that (i)dom (u") C S’ and that (ii)u" agrees with," on all
variables or’. This implies tha,”” = p and we conclude thatis
generated by the right side expressiea: Consider a mapping’
that is generated by the right side expressign(A:) X 7g/(Asz).
Theny' is of the formu’ = p) U 5, wherep) ~ u5 are generated
by the subexpressionss: (A1) and s/ (A2), respectively. Con-
sequently,4; and A, generate mappings; 2 wpf andpus O uh
such thatu; and 2 agree withu; andus on all variables inS’,
respectively. We distinguish two cases. First, (i):if and 2 are
compatible thenu := u1 U u2 agrees withy” on all variables in
S’, and thereforers, ({11}) = p’, so the left side expression gen-
eratesy’. Second, (i) ifu; andus are not compatible then there
is 7z € dom(u1) N dom(uz2) such thatu, (?z) # pa(?z). From
preconditionS’ 2 pVars(A1) N pVars(A2) and Proposition 2
it follows that ?z € S’. We know thatu} and 5 agree withu;
and z2 on all variables inS’. It follows thatp} (?x) # w5 (?z),
which contradicts the assumption th&t ~ u5. This completes
the second direction.

Applying the semantics from Definition 11, we rewrite the (right
side) multiplicitym,- () schematically:

Mr(H) = 2y efut €0 malms(uy D={a}} Mat\n2(K+)

(*1)
= Dy €l €@ malms (g D={uyy Mo (1)

py € {1 €\ malms ({u D={u}}

I
Wy € (s €0nlmgr ({u8 D=y 13 M1 ()
(52)
- Z(#+vu’+)€{(u1~,u1)€9ﬂ\ﬂ2 x|
!
s ({us D={utarg ({us H={ws 1y (15
Z(H#»aﬂ;)E{(Hi’N:,)EQWI\wZ x|

ms (g (s D) ={utAmgs ({ug =L 1y (1)

(*2)
- E(H%ﬂl‘;)e{(”ivﬂ;)Ele\WZ xQ1|

s ({us D={utAm g ({us H={uy 1y ma (1))

- (g) E{ (LA 1S) EQr 1\ 2 X 21\ 2
!

rs({us H={utarg ({us H={us 3 (15)
wy i (u)
= 2 e{ps e alns({ng H={n}} T+
> (i)
= 2 e{ps e alrs({ng H={p}} TM\2H+
= mu(p),

where stepx;) follows from the observation that.. 1\ 2 (1) =

my1(pd) forall pl € Qr1\x2, rewriting step £2) holds because
S C 9, step §3) follows from the observation that only those

mappings fromf2; contribute to the result that are also contained in

Q4\2, step €4) holds because every mappip§ € Q4> uniquely

Having shown that the mapping sets coincide under bag seman-determines a mapping; € 2.1\~ through conditionrs, ({1 }) =
tics, it remains to show that the left- and right side multiplicities 7%, and step £5) follows from the observation that (1%.) =
agree for each result mapping. We therefore switch to SPARQL m\,(u%) for all u% € Qqo.

bag algebra again. Let, AJ ¢ AT andS’ C V such thats’ D
pVars(A1) N pVars(Az) holds. We defined)” := mg/ (A] X
A7), AT = s (A]) M msi (A7), Ay == AT X AJ, AT o=
g (A]), AL, == 75:(AT), and AL, , := A, X Af,. Con-
sider a mapping: contained in the result of evaluatin™ and A;.
Applying the semantics from Definition 11 we rewrtig (u):
() = 2p, efut €Qumalmg ({ut H={u}} M12(ti+)

by €{pn €Quszlmgs ({n} H={n}}

(PLPush"). Similar to the proof of PLPush)for SPARQL set

algebra (observe that all rules that are used in the latter proof are

also valid in the context of SPARQL bag algebfa).
Group IV

As an example that shows th@Decompll)does not carry over
to bag algebra, consider the expressibn= [(c, ¢, ?z)] p, filter
R := (=?z = a) V (=?z = b) and documenD := {(c, ¢, ¢)}.

(FDecompl). Let At € A™ and R be a filter condition.
PutA := or,ar,(AT), AT := or, (or,(AT)), and A7, :=
or,(AT). Consider a mapping that is contained in the result of
evaluating4;t and A;F, which implies thaty € Q andy = Ry,

u E R, i E RiAR2. Applying the semantics from Definition 11
we can easily derive that; (1) = m(p) = me2(i) = me(1).

(FReord"). Follows from equivalencéFDecompl’) and the
commutativity of the boolean operator

(FBndI™) - (FBndIV"). Follow from the semantics ef in.O

Group V
(FUPush"). Follows from the semantics of andU.

(FMPush"). Let A}, AT € AT andR be a filter condition. Put
Al = or(AT\ AD), A = or(AT)\ AT, A1+\2 = A\ Af,
and A}, := or(A]). Consider a mapping that is contained in
the result of evaluatingl;” and A;". This implies that; = R,
€ g, p € 1, andu € Q1. Combining the semantics
from Definition 3 with the above observations we obtain(n) =

miz2 () = mi(p) = me1 () = me(p).

(FIJPush). Let A}, A € AT andR be a filter condition such
that for all 7z € vars(R):?7x € cVars(A1)V?z & pVars(As).
PutAf = or(Af X AY), Al = or(AT) X A7, AT, =
Af M AF, and AT, := or(A]). Consider a mapping that is
contained in the result of evaluatingj” and A;". Clearly it holds
thaty = R andu € Q2. Combining these observations with the
semantics from Definition 3 we obtain

mip2 (1)

Z(m,uz)G{(u’{,u;)Gﬂl XQa|pfUps=p}
(ma(p1) * ma(p2))

my ()

*

= E(Hlvl‘&)e{(ﬂfvﬂz)eﬂalXQQ‘HIUH’;:N}
(mo1(p1) * ma(u2

= my (),

where (*) follows from the observation that the precondition for
all 7z € vars(R):7x € cVars(A1)V?z & pVars(A2) implies
thatforallp, € Q1 p2 € Qo s.t.pu1Upe = pthe mappingg,: and
w1 agree on variables inars(R), i.e. each?z € vars(R) is either
bound to the same value jy andy or unbound in both. Hence,
for everyp; it holds thatu: = R, which justifies the rewriting.

(FLPush")). Similar to the proof of FLPush)for SPARQL set

algebra (observe that all rules that are used in the latter proof are

also valid in the context of SPARQL bag algebra).

Group VI

(MReord"), (MMUCorr™), (MJT). The three equivalences fol-
low easily from the semantics of operatpfrom Definition 11.

(fﬁ). Similar to the proof of(ﬂ]) for SPARQL set algebra

Lemma 6(3)Follows from the semantics of#x queries and the
semantics of the ©r operator (cf. Definition 4 and 3). In partic-
ular, the correctness follows from the semantics of operdttine
algebraic counterpart of operatopPQ it is straightforward to show
that (i) [Q1]p = 0 — [Q1]p K [Q2]p = 0 and (ii) if there is
somey € [Q1] p then there also is some€ € [Q1]p X [Q2]p-

Lemma 6(4)Follows from the semantics of 2x, the semantics
of operator A\D, and Proposition 2. Observe thalars([Q1]p)N
pVars([Q2]p) = 0 together with Proposition 2 implies that for
each pair of mappingéu1, p2) € [Q1]p x [Q2]p it holds that
dom(p1) C pVars([Q1]p), dom(pz) C pVars([Q2]p), and
thereforedom (u1) N dom(pe2) = 0.0

C.7 Proof of Lemma?

Lemma 7(1):Follows from the definition of BLECT DISTINCT
queries (cf. Appendix A.6) and Lemma 1, which shows that bag
and set semantics coincide w.r.t. mapping sets.

Lemma 7(2):Follows from the definition of the 8 ECT Dis-
TINCT and SELECT REDUCED query forms, i.e. it is easily shown
that the definition of functiomn in the SELECT DISTINCT query
form satisfies the two conditions (i) and (ii) that are enforced for
functionm in the definition of $LECT REDUCED queries.

Lemma 7(3)Follows from claims (1) and (2) of the lemmaa

C.8 Proof of Lemma8

Follows from the observation that fap € AFO™ we always
have that each mapping € [Q]}, has multiplicity one associ-
ated (i.e. the semantics coincide) and the fact that the projection on
variablesS O pVars([Q]p) does not modify the evaluation re-
sult. Please note that the first observation has already been made in
the technical report of [1], claiming that fo4 7O expressions the
multiplicity associated with each result mapping equals to ©ne.

D. PROOFSOF SEMANTIC RESULTS
D.1 Proof of Theorem 8

REMARK 1. Recall from Section 5 that in the following proof
we consider a fragment of SPARQL extended by empty graph pat-
terns {} (with semantic§{}] p := {0}) and by an algebraic Mius
operator (with semantidg): MINUS Q2]p := [Q1]p \ [Q2]p)-

To see why empty graph patterns are necessary to obtain the power
to encode first-order sentences observe that — in SPARQL without
empty patterns — it is impossible to write arsA query that re-
turnstrue on the empty document. To give a concrete example, in
the latter fragment (i.e., the one comprising expression according
to Definition 1) the first-order constraigt := —37(c, ¢, ¢) can-
not be encoded asgX query that returngrue on every document
D = ¢, because in particulad :=) = . Contrarily, observe
that in SPARQL extended by empty graph patterns (and operator
MINUS) we can easily encode as Ask({} MINUS (¢, ¢, ¢)).°
Concerning the extension by a syntactieNs operator it was

(observe that all rules that are used in the latter proof are also valid argued in [1] that this operator can always be simulated usirg O

in the context of SPARQL bag algebra).

(FLBndI™), (FLBndII™). Similar to the proof of FLBndl) and
(FLBndIl) for SPARQL set algebra (all rules that are used in the
latter proof are also valid in the context of SPARQL bag algebra).

C.6 Proof of Lemma6

Lemma 6(1)Follows from the semantics of gk and Lemma 1
Lemma 6(2):Follows from the semantics of K queries and
the semantics of the lON operator (cf. Definition 3 and 4).

TIONAL and RLTER, by help of so-called copy patterns. Unfor-
tunately, the encoding presented there relies on the presence of
variables in the right side expression of thaNus, i.e. fails for
expression likeQ1 MINUS (c,c,c). One workaround to fix the
construction seems to be the encodinglfMINUS Q- as

(Q1 OPT (Q2 AND (?z, 7y, ?2))) FILTER (=bnd(?z)),

%We wish to thank Claudio Gutierrez for helpful discussions on the
expressiveness of SPARQL and for pointing us to this encoding.

where?z, 7y, 7z ¢ pVars([Q2]p). In fact, this works when- The remainder of the proof follows a naive evaluation of first-
ever we forbid empty graph patterns@z. Yet in the general case order formulas on finite structures. With the help of the active
(i.e. if empty graph patterns occur @:), the encoding fails; un- domain subexpressiont@,, we generate all possible bindings for
fortunately, such situation may occur in the encoding in the subse- the free variables in a subformula. Note that there is no need to
quent proof of Theorem 8. To see why the above encoding gen- project away the dummy variabléas;;: we use fresh, distinct vari-

erally fails in the presence of empty patterns, choQse:= {}, ables for every subformula, so they never affect compatibility
Q2 = {}, andD := (. Then[Q:1 MINUSQ2]p = 0, but between two mappings (and hence do not influence the evaluation
[(Q1 OPT (Q2 AND (?z, 7y, ?2))) FILTER (=bnd(?z))]p = {0}. process); in the end, we are only interested in the boolean value, so

To conclude the discussion, itis an open question if operater M these bindings do not harm the construction. The subexpressions
NUS can be encoded by the remaining operators in the presence ofQ., are only the first step. We setc(t) := ¢ if ¢ is a constant
empty graph patterns and in response we decided to add the M andenc(t) := v(t) if ¢ is a variable and follow the definition of a
NUS operator to our fragment. We emphasize, though, that this formula’s semantics by generating all possible bindings for the free
gives us exactly the same fragment that was used in [1] to prove variables by induction on the formula’s structure. The encoding
that SPARQL has the same expressiveness as relational algebra. thus follows the possible structure gfgiven in (1)-(5) before:

In the subsequent proof of Theorem 8 we assume that the reader (1) Fory :=t; = t; we define

is familiar with first-order logic. We show that for each RDF con- enc(y)) 1= Qy FILTER (enc(t1) = enc(t2)).

straint, i.e. each first-order sentengcever the ternary predicatg, (2) Forey := T'(t1,t2, t3) we define

there is a SPARQL quer§),, such thafAsk(Q,)]p < D E . enc(y) := Qy AND (enc(t1), enc(ta), enc(ts)).

More precisely, we encode a first-order sentepdkat is built us- (3) Fory := —py we defineenc() := Q, MINUS enc(i1)
ing (1) equality formulas of the forny = t2, (2) relational atoms (@) Fory := (41 A) we define

of the formT'(¢1, t2, t3), (3) the negation operator, (4) the con- enc(y) == enc(yhr) AND enc(ihs).

junction operaton\, and (5) formulas of the formm3zv. We en-

codey as a SPARQL quer@, s.t.[Q.]p — 0 exactly if Ip b o, (5) Forey := —3z11 we defineenc(y) := Qu MINUS enc(1).

wherelp:=({s,p, 0 |(s,p,0) € D},{T(s,p,0)|(s,p,0) € D}), We now sketch the idea behind the encoding. It satisfies the fol-
.e. Ip is a structure that has as its domain the values fidm |oying two properties: £) foreach interpretatiol 7 := (Ip,~)
and contains a relational fadf(s, p, o) for each triple(s, p, o) such thatZ = ¢ there exists a mapping € [enc(¢)]p such

in D. It should be mentioned that, v ¢» can be written as thaty D {721 — ~(z1),...,%xn — ~(zn)} and) foreach
=(=1 A ﬁwQ.) and egch qu.antlfler formula can be brought into mappingyu € [enc()]p it holds that every interpretatior ,7)
the form (5), i.e.vzy is equivalent to-3z—) and 3zy can be with y(z;) := u(?z;) for 1 < i < n satisfiesp. Both directions
written as—(—-3z), so cases (1)-(5) are sufficient (we chose the together imply the initial claim, sinc&y = ¢ < [enc(e)]p = 0.

variant-3x4 because its encoding is simpler than &gy). The two directions can be proven by induction on the structure
Before presenting the encoding, we introduce some notation and ot formulas. Concerning the two basic cases (1) and (2) observe

definitions. Letvar(p) := {z1,...,zn} denoge all van;ibles ap- that, in their encoding, the active domain expressions generate the

pearing in formulay and define a se' := {?z1,...,7z.} of yniverse of all solutions, which is then restricted either by appli-

corresponding SPARQL variables. We introduce a total function ation of the filter (for case (1) := t; = t») or by joining

vz var(p) — S that translates each varlable?occurrlngolmto Its the active domain expression with the respective triple pattern (for

corresponding SPARQL variable, i@(x;) :=?z; for 1 < i < n. case (2 := T(t1,t2,t3)). In the induction step there are three

Further assume that " C V' is an infinite set of variables disjoint ¢a5es that remain to be shown. First, the idea of the encoding for
from S. For each subexpressianof . we define an infinite par- := -, is that we subtract from the universe of all solutions
tition .S,; C S~ such that, for each pair of distinct subexpressions exactly the solutions of, encoded byenc(y:). Second, a con-

Y1 # ¢ of it holds thatS,, NS, = 0. Based on these par- jnctions := 4, A 1 is straightforwardly mapped to a join op-
titions, we define for each subexpressiof ¢ its active domain eration between the encodings«0f and . Third, the encoding
expressiory).; as follows. Letfree(t)) := {v1,..., v} C S be for ¢ := -3z is similar to the encoding for the negation; ob-
the free variables in subexpressignThen we defin€),, as serve, however, that in this ca8e ¢ free(1), so the active do-

(0(01), 2a11, 7a12) UNION (Zars, v(v1), 7a1a) UNION (2ars, Zass, o(v1))) main expression does not contain variabteanymore, which can

AND be understood as an implicit projectian.
v(v2), Tas1, 7a U Tazs,v(va), 7a U ?ass, Taze, v(v
((vlv), 2z, Taz2) UNION (2azs, 4 (ba), Faza) UNION (2azs, Faze, v(v2))) 1y 5 proof of |emma 9
AN LetQ’ € cq ' (cbs(cq(@)))NA™. Thencq(Q') € cbs(cq(Q)).

This directly implies thatg(Q’) =s cq(Q) and it follows (from
the correctness of the translation) tit=x Q.0

where?a, 7a11, ..., ?ai6, .. ., fak1, .- ., fare are pairwise dis- D.3 Proof of Lemma 10

tinct variables taken fron,;. Note that the active domain ex- o . i .
pressions for two distinct subexpressions share at most variables_Direction=> follows from Lemma 9, so it suffices to prove direc-
from S, because?a and all 7a;; are chosen from the partition 10N <. So letus assume th@t’ =s @ andQ’ is minimal. First

that belongs to the respective subexpressions. Further, note thaPPServe that botbq‘l((cq(Q/))E/) andeq' ((cq(Q))™) are. A”-
Q. = {} becausev is a sentence and therefgiiee(p) = 0. To expressions. It folllows trllaiq(Q) == cq(Q). From this obsgr- .
give an intuition, eact),, represents all combinations of binding vation, the mlnlnjallty of)’, and the cortectne_sis of the translation it
the free variablesy, . .., vy in ¥ (more precisely, the correspond- follows thateg(Q') € cbs(cq(Q)) andQ” € cq™ (cbs(cq(Q)))-O
ing variablesy(v1), . .., v(vr)) to elements of the input document,

where?a and the?a;; are globally unique dummy variables thatare 1°An interpretation is a pair of a structure and functipthat maps
not of further importance (but were required for the construction). variables to elements of the structure’s domain.

((’U(’Uk), Tak1, ?akg) UNION (7ak3, ’U(vk), ?ak4) UNION (7ak5, ?ake, ’U(’Uk)))

D.4 Proof of Lemma 11

Rule (FSI):=: Assume that): =s Q2 FILTER (?z =?y) and
consider a mapping € [SELECTs(Q:2)]p. Theny is obtained
from somew; € [Q2]p by projecting on the variableS. By pre-
conditiony, is also contained iffQ2 FILTER (?z =7y)]p, SO we
know that?z,?y € dom(p;) and p;(?z) = w(?y). Itis eas-
ily verified that in this case there is a mappipg € QQ% that
agrees withu; on all variablesiom ;)\ 7y and is unbound fory
(cf. the proof of ruleg(FEliml) from Lemma 4). Given thaty ¢ S
and the observation that is obtained fromu; by projecting on
S, we conclude that is also obtained fronmu, when projecting
on S. Consequentlyu is generated by the right side expression
SELECTs(Q275%). <: Assume that), =x Q2 FILTER (?z =?y)
and consider a mapping € [[SELECTS(QZ%)HD. Theny is ob-
tained from someu, € [Q2 %HD by projecting on the variables
S. It can be shown that then the mapping := u, U {7y —
ur(?x)} is contained if Q2] p (cf. the proof of rule(FElim) from
Lemma 4). Given thaty ¢ S and the observation that is ob-
tained fromu,- by projecting onS, we conclude that is also ob-
tained fromyu; when projecting forS. Consequently, the left side
expressiofSELECTs(Q2)] p generates.

Rule (FSll):Follows trivially by the observation that, by assump-
tion, eachu € [Q2] p satisfies the filter conditiohw =7y.

Rule (FSIII):First note that preconditiorize € p Vars([Q2]p)
and@: € Aimply that?z € cVars([Q2]p). From Proposition 1
we obtain thaz € dom(u2) foreachus € [Q2]p and it easily
follows from Definition 6 that’z € dom(u) foreach mapping: €
[@:1 AND Q2] ». Now consider the expression

[Q1 OPTQ2]p = ([Q1]p X [Q2]p) U ([Q1]p \ [Q2]p)

and putQy := [[Ql]]D X HQQHD = [[Q1 AND Qz]]D, Q\ =
[Q1]p\[Q2] p. From the above considerations we know that
dom () foreachyus € Q. We now argue tha, = (, which
implies that the equivalence holds, because ther dom () for
everyu € [Q1 OPT Q2] p and no mapping satisfies the filter con-
dition —bnd(?z). To show tha2, = 0 let us for the sake of con-
tradiction assume there js € Q. This implies thap, € [Q1]p
and there is no compatible mappipg ~ .\ in [Q2]p. Now by
assumptionu, € [SELECT,vars([01]p) (@1 AND Q2)]p. Hence,
there must bgu, € [Q1]p, p2 € [Q2]p such thatu; ~ pp and
1 U pz 2 . Consequently, it trivially holds that, ~ w,
which contradicts to the initial assumption that there is no compat-
ible mappinguz ~ w in [Q2]p.0

D.5 Proof of Lemma 12

Rule (OSI):We transform@ := [Q1 OPT Q2] p systematically.
Let D be an RDF database d.satisfies all constraints id. Then

[Qlp =[Q1 OPTQ2]p
= ([Qi]p X [Q2]p) U ([@:1]p \ [Q2] D)
= [Q1 AND Q2] b U (Tpvars([Q11) ([Q1 AND Q2] p) \ [Q2] p)

Itis easy to verify that each mappingj@: AND Q2] p is com-
patible with at least one mapping @2, and the same holds for
Tpvars([Q1]) [@1 AND Q2] p. Hence, the right side union subex-
pression can be dropped and we ob@Qirss; Q1 AND Q-.

Rule (OSll):Let D be an RDF database si?. = X. We trans-
form expressior := [Q1 OPT (Q2 AND @3)] p schematically:
[Qlp = [(Q1 OPT(Q2 AND Q3))]p
[Q1 AND Q2 AND Qs]p U ([Q1]p \ [Q2 AND Q3] D)

[Q1 AND Q3] p U ([Q1 AND Q2] p \ [Q2 AND Q3] D)

[Q1 AND Q3]p U ([Q1 AND Q2] p \ [Qs]p)
([Q1]p ¥ [Qs]p) U ([@1]p \ [Q3]D)
[Q1 OPT Q3] D,

* |l

()

where step (*) follows from the observation that the equation

[Q1 AND Q2] p \ [Q2 AND Q3]p = [Q1 AND Q2] p \ [@3]D

holds; the formal proof of this equation is straightforwand.

