
FedX: A Federation Layer for Distributed Query
Processing on Linked Open Data

Andreas Schwarte1, Peter Haase1, Katja Hose2,
Ralf Schenkel2, and Michael Schmidt1

1fluid Operations AG, Walldorf, Germany
2Max-Planck Institute for Informatics, Saarbrücken, Germany

Abstract. Driven by the success of the Linked Open Data initiative
today’s Semantic Web is best characterized as a Web of interlinked
datasets. Hand in hand with this structure new challenges to query
processing are arising. Especially queries for which more than one data
source can contribute results require advanced optimization and evalua-
tion approaches, the major challenge lying in the nature of distribution:
Heterogenous data sources have to be integrated into a federation to
globally appear as a single repository. On the query level, though, tech-
niques have to be developed to meet the requirements of efficient query
computation in the distributed setting. We present FedX, a project which
extends the Sesame Framework with a federation layer that enables ef-
ficient query processing on distributed Linked Open Data sources. We
discuss key insights to its architecture and summarize our optimization
techniques for the federated setting. The practicability of our system will
be demonstrated in various scenarios using the Information Workbench.

1 Introduction

Motivated by the ongoing success of the Linked Open Data initiative and the
growing amount of semantic data sources available on the Web, new approaches
to query processing are emerging. While query processing in the context of RDF
is traditionally done locally using centralized stores, recently one can observe
a paradigm shift towards federated approaches which can be attributed to the
decentralized structure of the Semantic Web. The Linked Open Data cloud -
representing a large portion of the Semantic Web - comprises more than 200
datasets that are interlinked by RDF links. In practice many scenarios exist
where more than one data source can contribute information, making query
processing more complex. Contrary to the idea of Linked Data, centralized query
processing requires to copy and integrate relevant datasets into a local repository.
Accounting for the structure, the natural approach to follow in such a setting is
federated query processing over the distributed data sources.

While there exist efficient solutions to query processing in the context of RDF
for local, centralized repositories [7, 5], research contributions and frameworks for
distributed, federated query processing are still in the early stages. In practical
terms the Sesame framework in conjunction with AliBaba1 is one possible sample
solution allowing for federations of distributed repositories and endpoints. How-
ever, benchmarks have shown poor performance for many queries in the federated

1 http://www.openrdf.org/doc/alibaba/2.0-beta4/



setup due to the absence of advanced optimization techniques [6]. From the re-
search community DARQ [9] and Networked Graphs [10] contribute approaches
to federated SPARQL queries and federated integration. Since both require pro-
prietary extensions to languages and protocols which are not supported by most
of today’s endpoints, they are not applicable in practical environments.

In this demonstration paper we present FedX, a practical framework for
transparent access to data sources through a federation. The framework offers
efficient query processing in the distributed setting, while using only protocols
and standards that are supported by most of today’s data sources.

In the following we will describe the FedX system and give a demonstra-
tion of its practical applicability in the Information Workbench. In section 2 we
give some insights into the federation layer. Next, in section 3 we present the
demonstration scenario. Finally, we conclude with some remarks on future work.

2 FedX - Design and System Overview

FedX2 is being developed to provide an efficient solution for distributed query
processing on Linked Open Data. It is implemented in Java and extends the
Sesame framework with a federation layer. FedX is incorporated into Sesame
as a SAIL (Storage and Inference Layer), which is Sesame’s mechanism for al-
lowing seamless integration of standard and customized RDF repositories. The
underlying Sesame infrastructure enables heterogeneous data sources to be used
as endpoints within the federation. FedX implements the logics for optimization
and efficient execution of the query in the distributed setting.

Figure 1 shows the architecture of an application built on top of FedX. The
application layer provides the frontend to the query processing engine and is
necessary for any kind of interaction with the federation. We decided to employ
the Information Workbench [8] as such for our demonstration (see section 3).
However, any other application can be used as well by utilizing the Sesame API.

The second layer is composed of the Sesame Framework and provides the
basic infrastructure for the query processing engine. In particular this includes
facilities for query parsing, Java mappings, I/O components, and the API for
client interaction.

The federation layer is implemented as an extension to Sesame in form of
a SAIL and constitutes FedX. FedX utilizes the basic Sesame infrastructure de-
scribed above, and adds the necessary functionality for data source management,
endpoint communication and - most importantly - optimizations for distributed
query processing. Data sources can be added to a FedX federation in form of any
repository mediator, where the latter means a supported Sesame repository im-
plementation. Standard implementations are provided for local, native Sesame
repositories as well as for remote SPARQL endpoints. Furthermore custom medi-
ators can be integrated by implementing the appropriate Sesame interface. With
these mediators different types of federations are possible: purely local ones con-
sisting of native, local Sesame repositories, endpoint federations or hybrid forms.

2 FedX project page: http://iwb.fluidops.com/FedX



Information Workbench

Sesame
Framework

FedX:
Federation

Layer

Data
Sources

Application
Layer

Query Processing Infrastructure (Parsing, Java Mappings, I/O, Public API)

SPARQL
Endpoint

Native
Repository

Custom
Repository

HTTP API API

Optimizers
Statement Sources
Groupings & Filter

Join Order

Statistics + Cache
Variable Counting

Infrastructure
Endpoint Management

Concurrency
Evaluation Logic

Sesame API

Fig. 1: FedX System Overview

Federated query processing in FedX is comprised of the following steps. First,
a global query is formulated against a federation of data sources. The global
query is then parsed and optimized for the distributed setting. In particular it is
split into local subqueries that can be answered by the individual data sources.
Results of these local queries are merged in the federator and finally returned
in an aggregated form. The whole process is transparent for the user, i.e. data
appears to be virtually integrated in a single RDF graph.

Most crucial to the performance of such a query processing engine is the
use of optimization techniques. Especially in the federated, distributed setting
it is essential to apply new approaches to reduce the number of requests to
the endpoints. Besides various generic techniques, FedX integrates some more
sophisticated optimizations for the distributed environment. The combination
of our applied join order optimization and the grouped subqueries reduce the
number of intermediate results and requests tremendously, and are thus the
major contributions for improving query performance in the distributed setting.
The following listing gives an overview.

• Statement sources: Prior to query evaluation, all statements of the given
SPARQL query are examined for their relevant data sources to avoid unnec-
essary communication during query processing.

• Filter pushing: SPARQL filter expressions are pushed down whenever pos-
sible to allow for early evaluation.

• Parallel processing: Concurrency is exploited by means of multithreaded
execution of join and union computations.

• Join order: Join order tremendously influences performance since the number
of intermediate results determines overall query runtime. In FedX the vari-
able counting technique proposed in [3] supplemented with various heuristics
is used to estimate the cost for each join. Following a greedy approach the
joins are then executed in ascending order of cost.

• Bound joins: To reduce the number of requests and thus the overall runtime,
joins are computed in a block nested loop join.

• Groupings: Statements which have the same relevant data source are co-
executed in a single SPARQL query to push joins to the particular endpoint.



First benchmarks with FedBench3 indicate a significant improvement of query
performance compared to existing solutions4. For many queries proposed in [6] a
performance gain of more than 90% can be achieved resulting in improvements
of an order of magnitude, timeouts do not occur any longer. This is in particular
due to the improved join order and the other above mentioned optimizations.

3 Demonstrating FedX in the Information Workbench

With the goal of illustrating the practicability of our system we provide a demon-
stration scenario using the previously discussed architecture. We employ the
Information Workbench for demonstrating the federated approach to query pro-
cessing with FedX. The Information Workbench is a flexible platform for Linked
Data application development and provides among others frontend facilities for
our UI as well as the integration with the backend, i.e. the query processing lay-
ers. In our demonstration we show a browser based UI allowing dynamic access
and manipulation of federations at query time as well as ad hoc query formula-
tion, then we execute the optimized query at the configured data sources using
FedX, and finally we present the query results in the platform’s widget based
visualization components. The scenario steps from the user’s point of view are
summarized in the following and illustrated in figure 2.

1. Linked Open Data discovery. Data sources can be visually explored and
discovered using a global data registry.

2. Federation setup. The federation is constructed and/or modified dynam-
ically on demand using a browser based self-service interface. Discovered
Linked Data repositories can be integrated into the federation with a single
click.

3. Query definition. A query can be formulated ad hoc using SPARQL or
selected from a subset of the FedBench queries. The predefined queries are
designed to match the domain-specific data sources and produce results.

4. Query execution using FedX and result presentation. The formu-
lated query is submitted to the backend using the Sesame API and processed
within FedX. After the query is parsed by Sesame, FedX applies its optimiza-
tions and evaluates the query at the data sources given by the dynamically
configured federation. Finally, results are returned to the application layer
for presentation in the widget based visualization components provided by
the Information Workbench.

For the demonstration we use cross domain and lifescience datasets and
queries as proposed in the FedBench benchmark. Those collections span a subset
of the Linked Open Data cloud and are useful to illustrate practical applicabil-
ity of query processing techniques such as those of FedX. Since FedX improves

3 FedBench project page: http://code.google.com/p/fbench/
4 For an initial comparison we employed the AliBaba extension for the Sesame frame-

work. To the best of our knowledge AliBaba provides the only federation layer avail-
able that does not require any proprietary extensions (e.g. SPARQL extensions).



1
Linked Open Data

Discovery
Visual Exploration of Data Sets

2
Self-Service

Federation Setup
Integrate discovered Linked Data

4
Query Execution &

Result Presentation
Widget-based visualization in 

the Information Workbench

3
Query De�nition

Ad hoc query formulation 
using SPARQL

Fig. 2: Illustration of the Demonstration Workflow

query response time compared to existing solutions, and moreover since the to-
tal runtime for most queries is in a range that is considered responsive, it is a
valuable contribution for practical federated query processing.

4 Conclusion and Future Work

In this paper we have presented FedX and a practical demonstration within
the Information Workbench. FedX provides a flexible federation layer integrated
into the Sesame Framework which is suitable for practical application scenarios.
First evaluation benchmarks have indicated that response time and query per-
formance are such, that FedX in conjunction with a suitable application layer
can be considered a highly valuable framework for federated query processing in
today’s settings. In future versions more advanced optimization techniques will
be integrated into FedX to further improve query performance. Current ideas
include the use of caching, integration of statistics (e.g. voiD [2]), and finally
advanced grouping of subqueries to reduce the number requests.

References

1. Jeen Broekstra et al. Sesame: A Generic Architecture for Storing and Querying
RDF and RDF Schema. In The Semantic Web - ISWC 2002. Springer, 2002.

2. Keith Alexander et al. Describing Linked Datasets – On the Design and Usage of
voiD. In Proceedings of the Linked Data on the Web Workshop, 2009.

3. Markus Stocker et al. SPARQL basic graph pattern optimization using selectivity
estimation. In WWW, pages 595–604. ACM, 2008.

4. Olaf Görlitz et al. Federated Data Management and Query Optimization for Linked
Open Data. In New Directions in Web Data Management. 2011.

5. Orri Erling et al. Rdf support in the virtuoso dbms. In CSSW, 2007.
6. Peter Haase, Tobias Mathäß, and Michael Ziller. An Evaluation of Approaches to

Federated Query Processing over Linked Data. In I-SEMANTICS, 2010.
7. Thomas Neumann and Gerhard Weikum. Rdf-3X: a RISC-style engine for RDF.

PVLDB, 1(1), 2008.
8. Peter Haase et al. The Information Workbench - Interacting with the Web of

Data. Technical report, fluid Operations & AIFB Karlsruhe, 2009.
9. Bastian Quilitz and Ulf Leser. Querying distributed RDF data sources with

SPARQL. In ESWC, 2008.
10. Simon Schenk and Steffen Staab. Networked graphs: a declarative mechanism for

sparql rules, sparql views and rdf data integration on the web. In WWW, 2008.


