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Abstract. In this paper we present FedBench, a comprehensive bench-
mark suite for testing and analyzing the performance of federated query
processing strategies on semantic data. The major challenge lies in the
heterogeneity of semantic data use cases, where applications may face
different settings at both the data and query level, such as varying data
access interfaces, incomplete knowledge about data sources, availability
of different statistics, and varying degrees of query expressiveness. Ac-
counting for this heterogeneity, we present a highly flexible benchmark
suite, which can be customized to accommodate a variety of use cases
and compare competing approaches. We discuss design decisions, high-
light the flexibility in customization, and elaborate on the choice of data
and query sets. The practicability of our benchmark is demonstrated by
a rigorous evaluation of various application scenarios, where we indicate
both the benefits as well as limitations of the state-of-the-art federated
query processing strategies for semantic data.

1 Introduction

Driven by the success of the Linking Open Data initiative, the amount of se-
mantic data that is published on the Web in the form of RDF is increasing at
a tremendous pace. While offering great potentials for innovative applications
that integrate heterogeneous data from different sources, on the data manage-
ment side, this development comes along with a variety of new challenges, last
but not least due to the sheer amount of data that may be utilized by such appli-
cations. Most research contributions in the context of RDF data processing have
focused on the problem of query evaluation over local, centralized repositories
(see e.g. [2, 24, 19]) – and for these scenarios different benchmarks have been pro-
posed [11, 6, 21]. Accounting for the decentralized nature of the Semantic Web,
though, one can observe an ongoing shift from localized to federated semantic
data processing, where independent endpoints provide data, and semantic data
applications utilize both local repositories and remote data sources at the same
time to satisfy their information needs. In response to this paradigm shift, dif-
ferent federated RDF processing strategies – targeted at different use cases and
application scenarios – have been proposed [15, 14, 16, 9, 17].



With distributed semantic data processing becoming increasingly important,
we identify a clear need for a benchmark tailored to the problem of federated
semantic data query processing. We employ a broad definition of semantic data,
which includes Linked Data sources, datasets, and ontologies represented in
RDF. The main challenge here lies in the diversity and heterogeneity of se-
mantic data use cases, and the demands they pose to a benchmark: First, we
can observe heterogeneity at data level along several dimensions: applications
are facing different physical distribution of datasets, different interfaces for data
access, incomplete knowledge about the existence of entry points into the Web of
data, and different types of metadata and statistics. Apart from the challenges
at data level, applications may also exhibit different demands w.r.t. query eval-
uation, including aspects such as query languages, expressiveness, and ranking.

The overall setting in which a concrete semantic data application is settled
may have severe impact on query processing strategies. Ultimately, there cannot
exist a single “one-size-fits-all” benchmark to measure each and every aspect of
an application – or to compare the performance of orthogonal federated query
processing strategies. Hence, taking an existing benchmark and distributing its
data across several endpoints may cover some, but not all challenges that arise
in the context of federated semantic data processing. What is needed instead is
a collection of customizable benchmark scenarios that accommodate a multitude
of dimensions as well as essential challenges – and from which one can choose
data sets, queries, and settings that fit the specific needs.

Contributions. (1) Based on a review of federated query processing scenar-
ios our community has dealt with so far, we discuss orthogonal dimensions at
data and query level that can be used to classify existing approaches. (2) Ac-
counting for the heterogeneity of these dimensions, we present a rich collection
of queries, data, and data statistics, which can be flexibly combined and cus-
tomized. This makes our benchmark generic enough to cover a broad range of
use cases, such as testing the performance of the underlying federation approach,
data access mechanisms, static optimization based on metadata and statistics,
queries with varying characteristics, and many more. All queries and datasets
were carefully chosen to reflect a variety of domains, query patterns, and typi-
cal challenges in query processing (in particular in distributed settings). While
some of the queries were specifically designed to test and vary in these aspects,
others were taken from prototypical, domain-specific use cases (e.g. in the Life
Science domain) built by participants in other projects. (3) In order to show
the flexibility and illustrate the broad range of scenarios covered by FedBench,
we provide results for selected scenarios and implementations, identifying areas
where ongoing work is required. Our results are published in a Wiki, where we
also maintain data, statistics, queries, and scenarios. We invite researchers and
benchmark users to customize and extend the benchmark suite according to
their own needs.

We point out that the resulting benchmark suite is available online1, includ-
ing a flexible and extensible Open Source Java-based evaluation framework.

1 See http://fbench.googlecode.com/



Related Work. Apart from benchmarks that target structural properties of
RDF schemas (such as [18]), several benchmarks for RDF, RDFS, and OWL
data processing have been proposed. The Lehigh University Benchmark [11],
for instance, has been designed to test the reasoning capabilities of systems
over a single ontology. The SPARQL-specific, use-case driven Berlin SPARQL
Benchmark [6] comes with a set of queries implementing meaningful requests on
top of an eCommerce scenario modeled in RDF. Complementary, the SPARQL
Performance Benchmark (SP2Bench) [21] puts a stronger focus on language-
specific features of the SPARQL query language, addressing optimization in
complex scenarios. None of the above benchmarks considers federation at data
level, nor does provide data collections consisting of multiple interlinked datasets.

To the best of our knowledge, the only work addressing the latter issue was
our previous work in [13], which – focusing on selected federation approaches –
served as a starting point for designing FedBench. Going far beyond this initial
work, in this paper we present a holistic benchmark suite, including a variety
of new data and query sets, new scenarios such as Linked Data access (i.e., via
HTTP requests), an automated evaluation framework (with support for various
metrics like counting the number of requests, automated evaluation, interfaces for
connecting new systems etc.), a discussion and classification of state-of-the-art
approaches, a discussion of statistics, as well as novel experiments and findings.

Our benchmark has been designed to be compatible with the current state-of-
the-art in Linked Data query processing. In particular, in our benchmark we use
queries defined in SPARQL 1.0, without requiring specific extensions for explicit
specification of the endpoint services as proposed by the SPARQL 1.1 federation
extensions. To our knowledge, there is currently no public implementation of the
SPARQL 1.1 federation extension [1]. Examples of systems expected to support
SPARQL 1.1 federation in future releases include SPARQL DQP [5], Sesame [7],
and FedX [23]. While in this paper we focus on SPARQL 1.0 features, on our
project page we also provide SPARQL 1.1 versions of the benchmark queries,
ready to be used as soon as implementations become available.

An analysis and comparison of the structure of different semantic data sets
and benchmarks from the Linked Data domain is presented in [8]. It shows
that artificial datasets used in benchmarks are typically highly structured, while
Linked Data are less structured. They conclude that benchmarks should not
solely rely on artificial data but also consider real world datasets. Resuming this
discussion, in Section 3.1 we will present an analysis and comparison of our data
sets using the methods proposed in [8].

Outline. In the next section, we identify and discuss essential dimensions of fed-
erated semantic data processing, which form the groundwork for the benchmark
suite presented in this paper. Next, in Section 3 we motivate benchmark design
goals and present the suite in detail, namely benchmark datasets (Section 3.1),
covering aspects such as their properties and associated statistics, benchmark
queries and their properties (Section 3.2), as well as the benchmark driver (Sec-
tion 3.3). We turn towards a comprehensive evaluation of concrete application
scenarios in Section 4 and wrap up with some concluding remarks in Section 5.



2 Heterogeneity of Semantic Data Use Cases

To date, several approaches to semantic data query processing have been studied,
comprising both centralized and decentralized settings. Centralized approaches,
where all data is periodically crawled and stored locally, come with the merits of
high controllability and reliability. While Google and the likes have shown that
this is a successful approach for dealing with Web documents that primarily
comprise text, it has also been adopted for semantic data, where projects like
Factforge2 collect large amounts of RDF(S) data in centralized stores.

If federation is set up dynamically or the underlying sources exhibit high
update rates, though, it may not be affordable to keep imported semantic data
up-to-date. Then, decentralized, federated query processing strategies are re-
quired, typically implemented on top of public SPARQL endpoints or directly
on Linked Data accessible via HTTP requests. In the best case, not only the ex-
istence of data sources but also detailed statistics can be assumed and exploited
for optimization [14]. A stronger relaxation is to assume only partial knowledge
about the sources, e.g. past information that is stored and employed for future
runs, thereby obtaining more entry points and hints to explore unknown sources
in a goal-directed fashion. In fact, it has been shown that already little knowl-
edge obtained at runtime can be used to adaptively correct the query processing
strategy chosen at compile time, to improve performance [16]. In the worst case,
engines have to deal with federated scenarios where no data and knowledge are
available, so queries have to be processed based on iterative URI lookups [15].

In summary, previous approaches reveal several dimensions along the data
and query level, which we use to characterize approaches. They determine the
challenges, including the major issues of centralized vs. decentralized process-
ing and knowledge about datasets discussed above. At data level, we identify
heterogeneity along the following dimensions:

(D1) Physical Distribution: Federated query processing systems may either
access and process global data from the Web, process locally stored data
sources, or mix up both paradigms connecting local with global data.

(D2) Data Access Interface: Semantic data may be accessible through dif-
ferent interfaces. There may be native repositories, SPARQL endpoints, and
Linked Data accessible through HTTP requests. These interfaces provide
different access paths to the data, ranging from iterators at data level, URI
lookups, to expressive queries in different languages.

(D3) Data Source Existence: In particular in Linked Data scenarios, not all
sources may be known a priori. Hence, applications may have only few entry
points into the data graph, which can be used to iteratively deep-dive by
exploring links (see for instance the setting described in [16]).

(D4) Data Statistics: In the best case, advanced statistical information about
properties, counts, and distributions in the form of histograms for all data
sets are available; in the worst case – in particular if data is not stored locally
– only few or no information about the data sources may be given.

2 http://ontotext.com/factforge/



The concrete setting an application faces at data level – i.e., the classification
within dimension (D1)–(D4) – implies challenges in data processing and imposes
an upper bound on the efficiency in query processing: applications built on top
of local repositories exploiting detailed statistical knowledge for query optimiza-
tion, for instance, are generally faster than applications that rely on federated
Linked Data accessible via HTTP lookups, where network delay and incomplete
knowledge about data sets impose hard limits on query efficiency.

Apart from the challenges at data level, applications may also face differ-
ent challenges at query level. Like the dimensions at data level, also those at
query level drive the challenges behind semantic data applications and should
be covered in a benchmark. In particular, we identify the following dimensions.

(Q1) Query Language: The expressiveness of the query language needed by
applications may vary from case to case: while some applications get around
with simple conjunctive queries, others may rely on the full expressive power
of RDF query languages, such as the de facto standard SPARQL [20, 22].

(Q2) Result Completeness: Certain applications may rely on complete re-
sults, while others cannot afford it when responsiveness is first priority. In
particular in Linked Data scenarios where complete knowledge cannot be
assumed (s.t., beginning from some entry points, further sources have to be
discovered via online link traversal) not all data sources may be found [15,
16].

(Q3): Ranking: Applications may be interested in queries that enable ranking
according to some predefined metrics, or maybe only in top-k results.

3 FedBench: Benchmark Description

In order to support benchmarking of the different scenarios that emerge along
all the dimensions, FedBench consists of three components, all of which can
be customized and extended to fit the desired scenario: (i) multiple datasets,
(ii) multiple query sets, and (iii) a comprehensive evaluation framework. We
first elaborate on the datasets and statistics (addressing dimension (D4)), then
present the queries (addressing dimensions (Q1)–(Q3)), and conclude with a
discussion of our evaluation framework, which addresses dimensions (D1)–(D3).

3.1 Benchmark Data

Accounting for the heterogeneity of semantic data use cases, we provide three
data collections, each consisting of a number of interlinked datasets. The data
collections have been selected to represent both real-world and artificial data
federations over multiple representative semantic datasets. The collections differ
in size, coverage, and types of interlinkage. Two of them are subsets of the Linked
Open Data cloud: The first spans different domains of general interest, represent-
ing typical scenarios of combining cross-domain data with heterogeneous types
of interlinkage; the second contains datasets from the Life Science area, repre-
senting a federation scenario in a very domain-specific setting. Additionally, we



use a partitioned synthetic data collection, whose advantage lies in the ability to
simulate federations of varying size with well-defined characteristics of the data.

General Linked Open Data Collection. This first data collection consists of
datasets from different domains: DBpedia is a central hub in the Linked Data
world, containing structured data extracted from Wikipedia. Many datasets are
linked to DBpedia instances. GeoNames provides information about geographic
entities like countries and cities. Jamendo is a music database containing infor-
mation about artists, records, tracks, publishers and publication dates. Linked-
MDB exhibits details about films, genres, actors, producers, etc. and connects
its instances to the corresponding DBpedia entities. The New York Times
dataset contains about 10,000 subject headings covering different topics, which
are linked with with people, organizations and locations. Finally, the Semantic
Web Dog Food dataset provides information about Semantic Web conferences
of the past years, including paper descriptions, authors, and so on.

Life Science Data Collection. In this collection, we again included the DBpe-
dia subset from the General Linked Open Data dataset as a central hub. KEGG
(Kyoto Encyclopedia of Genes and Genomes) contains data about chemical com-
pounds and reactions, with a focus on information relevant for geneticists. It is
published in a number of separate modules; in the dataset we included the mod-
ules KEGG Drug, Enzyme, Reaction and Compound. Next, ChEBI (Chemical
Entities of Biological Interest) is a dictionary of molecular entities focused on
“small” chemical compounds, describing constitutionally or isotopically distinct
atoms, molecules, ions, ion pairs, radicals, radical ions, complexes, conformers,
etc. DrugBank is a bioinformatics and cheminformatics resource that combines
detailed drug (i.e. chemical, pharmacological, and pharmaceutical) data with
comprehensive drug target (i.e. sequence, structure, and pathway) information.
The datasets are linked in different ways: Drugbank is linked with DBpedia via
owl:sameAs statements, and other datasets are linked via special properties,
e.g. Drugbank links to KEGG via the property keggCompoundId. KEGG and
Drugbank can be joined via identifiers of the CAS database (Chemical Abstract
Service). Some links are implicit by the use of common identifiers in literal values,
e.g. the genericName in Drugbank corresponds to the title in ChEBI.

SP2Bench is a synthetic dataset generated by the SP2Bench data genera-
tor [21], which mirrors vital characteristics (such as power law distributions
or Gaussian curves) encountered in the DBLP bibliographic database. The data
generator provides a single dataset, from which we created a collection by clus-
tering by the types occurring in the dataset, finally obtaining 16 sub-datasets
(for persons, inproceedings, articles, etc.) that can be deployed independently in
a distributed scenario. The data collection consists of 10M triples in total.

Metadata and Statistics about data sources are important for identifying
suitable data sources for answering a given query, as well as for query optimiza-
tion. They can be used to parametrize the benchmark along dimension (D4).



Table 1: Basic Statistics of Datasets1

Collection Dataset version #triples #subj. #pred. #obj. #types #links strct.

DBpedia subset2 3.5.1 43.6M 9.50M 1063 13.6M 248 61.5k 0.19
NY Times 2010-01-13 335k 21.7k 36 192k 2 31.7k 0.73

Cross LinkedMDB 2010-01-19 6.15M 694k 222 2.05M 53 63.1k 0.73
Domain Jamendo 2010-11-25 1.05M 336k 26 441k 11 1.7k 0.96

GeoNames 2010-10-06 108M 7.48M 26 35.8M 1 118k 0.52
SW Dog Food 2010-11-25 104k 12.0k 118 37.5k 103 1.6k 0.43

DBpedia subset2 3.5.1 43.6M 9.50M 1063 13.6M 248 61.5k 0.19
Life KEGG 2010-11-25 1.09M 34.3k 21 939k 4 30k 0.92
Sciences Drugbank 2010-11-25 767k 19.7k 119 276k 8 9.5k 0.72

ChEBI 2010-11-25 7.33M 50.5k 28 772k 1 - 0.34

SP2Bench SP2Bench 10M v1.01 10M 1.7M 77 5.4M 12 - 0.76
1 All datasets are available at http://code.google.com/p/fbench/.
2 Includes the ontology, infobox types plus mapped properties, titles, article categories with labels,

Geo coordinates, images, SKOS categories, and links to New York Times and Linked Geo Data.

Some Linked Data sources provide basic VoiD [3] statistics such as number
of triples, distinct subjects, predicates, objects, and information about the vo-
cabulary and links to other sources. Table 1 surveys such basic statistics for
our datasets. These and other statistics (such as predicate and type frequency,
histograms, full pattern indexes obtained by counting all combinations of values
in triple patterns, full join indexes obtained by counting all join combinations,
and link statistics) can be exploited by engines in the optimization process.

Duan et al. [8] introduced the notion of structuredness, which indicates
whether the instances in a dataset have only a few or all attributes of their
types set. They show that artificial datasets are typically highly structured and
“real” datasets are less structured. As shown in the last column of Table 1,
the structuredness (range [0, 1]) varies for our datasets, e.g. DBpedia has a low
structuredness value whereas Jamendo and KEGG are highly structured.

3.2 Benchmark Queries

There are two reasonable options for the design of benchmark queries [10]:
language-specific vs. use case driven design. The query sets we propose cover
both dimensions. We choose SPARQL as a query language: It is known to be
relationally complete, allowing us to encode a broad range of queries with vary-
ing complexity, from simple conjunctive queries to complex requests involving
e.g. negation [4, 20, 22]. We restrict ourselves on general characteristics, pointing
to the FedBench project page for a complete listing and description.

Life Science (LS) and Cross Domain Queries (CD). These two query
sets implement realistic, real-life use cases on top of the cross-domain and life
science data collection, respectively. Their focus is on federation-specific aspects,
in particular (1) number of data sources involved, (2) join complexity, (3) types
of links used to join sources, and (4) varying query (and intermediate) result
size. Figure 1 exemplarily discusses three queries taken from these query sets.



Example, Life Science Query 4: For all drugs
in DBpedia, find all drugs they interact with,
along with an explanation of the interaction.

Example, Cross Domain Query 5: Find the
director and the genre of movies directed by
Italians.

SELECT ?Drug ?IntDrug ?IntEffect WHERE {
?Drug rdf:type dbpedia-owl:Drug .
?y owl:sameAs ?Drug .
?Int drugbank:interactionDrug1 ?y .
?Int drugbank:interactionDrug2 ?IntDrug .
?Int drugbank:text ?IntEffect . }

SELECT ?film ?director ?genre WHERE {
?film dbpedia-owl:director ?director.
?director dbpedia-owl:nationality dbpedia:Italy .
?x owl:sameAs ?film .
?x linkedMDB:genre ?genre . }

This query includes a star-shaped sub pattern of
drugs which is connected via owl:sameAs link to
DBpedia drug entities.

A chain-like query for finding film entities (in
LinkedMDB and in DBpedia) linked via owl:sameAs
and restricted on genre and director.

Example, Linked Data Query 4: Find authors of papers at the ESWC 2010 conference who
were also involved in the conference organization.

SELECT * WHERE {
?role swc:isRoleAt <http://data.semanticweb.org/conference/eswc/2010> .
?role swc:heldBy ?p .
?paper swrc:author> ?p .
?paper swc:isPartOf ?proceedings .
?proceedings swc:relatedToEvent <http://data.semanticweb.org/conference/eswc/2010> }

Fig. 1: Selected Benchmark Queries

SP2Bench Queries (SP). Next, we reuse the queries from the SP2Bench
SPARQL performance benchmark, which were designed to test a variety of
SPARQL constructs and operator constellations, but also cover characteristics
like data access patterns, result size, and different join selectivities. Some of the
SP2Bench queries have high complexity, implementing advanced language con-
structs such as negation and double negation. They are intended to be run on
top of the distributed SP2Bench dataset described in Section 3.1. A thorough
discussion of the queries and their properties can be found in [21].

Linked Data Queries (LD). Today’s Linked Data engines typically focus on
basic graph patterns (Conjunctive Queries). Therefore, all LD queries are basic
graph pattern queries, designed to deliver results when processing Linked Data in
an exploration-based way (cf. the bottom-up strategy described in Section 4.1).

Queries LD1–LD4 use the SW Dog Food dataset to extract information about
conference and associated people. LD1–LD3 all contain a single URI to be used
as a starting-point for exploration-based query processing, whereas LD4 has two
URIs that could be used to speed up processing by starting the exploration from
multiple points in the Linked Data graph (cf. Figure 1). The other queries operate
on DBpedia, LinkedMDB, NewYork Times, and the Life Science collection. In
summary, the Linked Data queries vary in a broad range of characteristics, such
as number of sources involved, number of query results, and query structure.

Query Characteristics. Table 2 surveys the query properties, showing that
they vastly vary in their characteristics. We indicate the SPARQL operators
used inside the query (Op.), the solution modifiers that were used additionally
(Sol.), categorize the query structure (Struct.), roughly distinguishing different
join combinations – like subject-subject or subject-object joins – leading to dif-
ferent query structures commonly referred to as star-shaped, chain, or hybrid



Table 2: Query Characteristics. Operators: And (“.”), Union, Filter, Optional;
Modifiers: Distinct, Limit, Of fset, OrderBy; Structure: Star, Chain, Hybrid

Life Science (LS) SP2Bench (SP) Linked Data (LD)
Op. Mod. Struct. #Res. #Src Op. Mod. Struct. #Res. #Src Op. Mod. Struct. #Res.

1 U - - 1159 2 1 A - S 1 11 1 A - C 309
2 AU - - 333 4 2 AO Or S >500k 12 2 A - C 185
3 A - H 9054 2 3a AF - S >300k 16 3 A - C 162
4 A - H 3 2 3b AF - S 2209 16 4 A - C 50
5 A - H 393 3 3c AF - S 0 16 5 A - S 10
6 A - H 28 3 4 AF D C >40M 14 6 A - H 11
7 AFO - H 144 3 5a AF D C >300k 14 7 A - S 1024

Cross Domain (CD) 5b AF D C >300k 14 8 A - H 22
1 AU - S 90 2 6 AFO - H >700k 16 9 A - C 1
2 A - S 1 2 7 AFO D H >2k 14 10 A - C 3
3 A - H 2 5 8 AFU D H 493 16 11 A - S 239
4 A - C 1 5 9 AU D - 4 16
5 A - C 2 5 10 - - - 656 12
6 A - C 11 4 11 - LOfOr - 10 8
7 A - C 1 5

queries, and indicate the number of results (#Res.) on the associated datasets
(we provide an estimated lower bound when the precise number is unknown).
In addition, we denote the number of datasets that potentially contribute to the
result (#Src) , i.e. those that match at least one triple pattern in the query.
Note that the number of data sets used for evaluation depends on the evalua-
tion strategy (e.g., an engine may substitute variable bindings at runtime and,
in turn, some endpoints would no longer yield results for it), or intermediate
results delivered by endpoints may be irrelevant for the final outcome. We ob-
serve that the (LS) queries typically address 2–3 sources, the (CD) queries up to
5 sources, while the (SP) queries have intermediate results in up to 16 sources
(where, however, typically only few sources contribute to the result).

3.3 Benchmark Evaluation Framework

To help users executing FedBench in a standardized way and support parametriza-
tion along the dimensions from Section 2, we have developed a Java benchmark
driver, which is available in Open Source. It provides an integrated execution
engine for the different scenarios and is highly configurable. Using the Sesame3

API as a mediator, it offers support for querying local repositories, SPARQL end-
points, and Linked Data in a federated setting. Systems that are not built upon
Sesame can easily be integrated by implementing the generic Sesame interfaces.

The driver comes with predefined configurations for the benchmark scenar-
ios that will be discussed in our experimental results. Custom scenarios can be
created intuitively by writing config files that define properties for data con-
figuration and other benchmark settings (query sets, number of runs, timeout,
output mediator, etc). In particular, one can specify the types of repositories

3 http://www.openrdf.org/



(e.g., native vs. SPARQL endpoints), automatically load datasets into reposito-
ries (while measuring loading time), and execute arbitrary queries while simulat-
ing real-world conditions like execution via HTTP with a customizable network
delay. Combining this flexibility with the predefined data and query sets thus
allows the user to customize the benchmark along the dimensions relevant for
the setting under consideration. Designed with the goal to position the bench-
mark as an ongoing community effort, the underlying evaluation framework is
Open Source and has been designed with extensibility in mind at different lev-
els. In particular, it is easy to specify complex evaluation settings by means of
simple configuration files (i.e., without code modifications), plug in new systems,
implement new metrics, evaluate and visualize results, etc.

To standardize the output format, the driver ships two default mediators for
writing results in CSV and RDF; for the latter we have implemented an Infor-
mation Workbench [12] module to visualize benchmark results automatically.

4 Evaluation

The central goal of our experimental evaluation is to demonstrate the usefulness
of our benchmark suite. Thus, in order to show that our framework is a useful
tool to assess strengths and weaknesses in a variety of semantic data use cases,
we investigate different scenarios that vary in the dimensions sketched in Sec-
tion 2, in particular in data distribution, access interfaces, and query complexity.
For space limitations, aspects (Q2) Result Completeness and (Q3) Ranking are
not covered; further, there are currently no systems that improve their behavior
when an increasing amount of statistics are provided, so (D4) Data Statistics
could only be assessed by comparing systems that make use of different statis-
tics. All experiments described in the following are supported by our benchmark
driver out-of-the-box and were realized by setting up simple benchmark driver
config files specifying data and query sets, setup information, etc. We refer the
interested reader to [23] for additional results on other systems, such as DARQ
and FedX. We start with a description of the scenarios, then discuss the bench-
mark environment, and conclude with a discussion of the evaluation results.

4.1 Description of Scenarios

(A) RDF Databases vs. SPARQL Endpoints. This first set of scenarios
was chosen to demonstrate the capabilities of FedBench to compare federation
approaches for data stored in local RDF databases or accessible via SPARQL
endpoints. In particular, they were designed to test how dimensions (D1) Physical
Distribution of data and (D2) Data Access Interfaces affect query evaluation
while the remaining dimensions are fixed across the scenarios, namely

(A1) centralized processing, where all data is held in a local, central store, vs.
(A2) local federation, where we use a federation of local repository endpoints, all

of which are linked to each other in a federation layer, vs.



(A3) a federation of SPARQL endpoints, also linked to each other in a common
local federation layer, pursuing the goal to test the overhead that is imposed
by the SPARQL requests exchanged over the associated HTTP layer.

For all scenarios, we carried out experiments with the Sesame 2.3.2 engine
using AliBaba version 2.0 beta 3, a federation layer for the Sesame framework
which links integrated federation members together. In addition, we carried out
experiments with the SPLENDID federation system from [9]. In contrast to the
AliBaba federation, the latter uses statistical data about predicates and types
to select appropriate data sources for answering triple patterns, which offers a
wide range of optimization opportunities. Patterns that need to be sent to the
same source are grouped and the join order between them is optimized with
a dynamic programming approach, using e.g. the number of distinct subjects
and objects per predicate to estimate the cardinality of intermediate results.
The evaluation strategy relies on hash joins to allow for parallel execution and
to reduce the number of HTTP requests, instead of sending individual result
bindings to endpoints in a nested-loop join.

(B) Linked Data. Complementing the previous scenarios, we also evaluated
a Linked Data scenario, where the data is distributed among a large number of
sources that can only be retrieved using URI lookup and queries are evaluated
on the combined graph formed by the union of these sources. Hence, in this
setting the focus is on the knowledge about (D3) Data Source Existence. When
all relevant sources are known, all of them are retrieved using their URIs before
executing the query on the retrieved data (top-down) [14]. Another scheme that
does not require a priori knowledge about data sources is an exploration-based
approach [15]. Here, the query is assumed to contain at least one constant that
is a URI. This URI is then used for retrieving the first source, and new sources
are iteratively discovered in a bottom-up fashion starting with links found in
that source (bottom-up). The (mixed) approach in [16] combines bottom-up and
top-down to discover new sources at runtime as well as leverage known sources.

All three approaches in scenario (B) were evaluated based on the Linked
Data query set (LD) using the prototype system from [16], which implements a
stream-based query processing engine based on symmetric hash join operators.
Note that all three approaches yield complete results (by design of the queries).

4.2 Setup and Evaluation Metrics

All experiments were carried out on an Integrated Lights-Out 2 (ILO2) HP server
ProLiant DL360 G6 with 2000MHz 4Core CPU and 128KB L1 Cache, 1024KB
L2 Cache, 4096KB L3 Cache, 32GB 1333MHz RAM, and a 160GB SCSI hard
drive. They were run on top of a 64bit Windows 2008 Server operating system
and executed with a 64bit Java VM 1.6.0 22 (all tested systems were Java-based).
In the centralized setting (A1) we reserved a maximum of 28GB RAM to the
VM, while in the distributed settings we assigned 20GB to the server process
and 1GB to the client processes (i.e., the individual endpoints). Note that we run
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Fig. 2: Scenario (A): Evaluation Time (top) and Number of Requests to End-
points (bottom) for the Cross Domain and Life Science Queries

all tests against local SPARQL endpoints, one for each federation member, to
avoid unpredictable effects like network delay and high load of remote sources.

All query mixes in each setup have been run three times with a timeout of
ten minutes per query. We report on the average total time over all runs. Queries
that failed (e.g. with a system-internal exception) or delivered an unsound or
incomplete result are indicated by “Evaluation Error”. To exclude the influence
of cold start effects, for each setup we ran a “ramp-up” query mix prior to query
evaluation. We executed each query set separately and in order, counting the
number of results (but not materializing them on disk). In addition to the eval-
uation time, we counted the number of requests sent to the individual endpoints
(which is supported by our benchmark driver out-of-the-box).

For the Linked Data scenario, a CumulusRDF4 Linked Data server was used
to deploy the dataset on the local network. Both the server process and the
Linked Data server were started with a maximum of 10GB RAM reserved. To
simulate internet conditions, an artificial delay of 750ms was introduced, which
resembles typical response times of current Linked Data servers.

4.3 Experimental Results

Figure 2 summarizes our results for the cross domain (CD) and life science (LS)
queries in scenarios (A1)–(A3). The two plots visualize evaluation time, while
the table at the bottom shows the number of requests sent by the systems to
the federation members (numbers in parentheses are lower bounds for queries
that failed due to timeout). Comparing Sesame and AliBaba first, we observe
that the centralized approach in almost all cases outperforms the local federation

4 http://code.google.com/p/cumulusrdf/



approach, for 5 out of 14 queries even by an order of one magnitude or more (the
time for the centralized store for queries CD2 and LS4 was about 1ms, which
is not visible in the diagram). We observe an additional performance overhead
for the AliBaba SPARQL Endpoint federation approach, which delivered results
only for 8 out of the 14 queries. Upon closer investigation, we could identify
several reasons for the poor performance of the AliBaba federation approaches:

• Due to lack of statistics, effective join order optimization is often impossible,
resulting in a high number of triples being exchange in the federation.

• Also caused by the lack of statistics, the AliBaba federation layer iteratively
sends triple patterns to all federation members, to obtain candidate bind-
ings for free variables. These bindings are then instantiated in the remaining
part of the query, subsequently sending instantiated triple patterns to the
federation members in a nested-loop fashion. This often results in a very
high number of requests to the federation members (cf. the table at the bot-
tom), which cause the high evaluation time. Given that AliBaba’s strategy is
identical in the local and SPARQL Endpoint federation scenario, the results
indicate an enormous overhead imposed by the HTTP layer in the SPARQL
Endpoint federation, typically in the order of one magnitude or more.

• Sesame’s ability to deal with parallelization is limited. In the SPARQL End-
point scenario, where our driver simulates endpoints by servlets that process
incoming HTTP requests, we experimented with different degrees of paral-
lelization. When instantiating more than 5–10 worker threads for answering
the queries (each having its own repository connection), we could observe
a performance drop down, manifesting in high waiting times for the worker
threads, probably caused by Sesame’s internal locking concept.

For the SPLENDID federation, we can observe that the number of HTTP
requests is significantly lower: in contrast to AliBaba, which evaluates the query
starting with a single triple pattern and iteratively substitutes results in sub-
sequent patterns, SPLENDID also generates execution plans which send the
patterns independently to relevant endpoints and join them together locally, at
the server. Therefore, SPLENDID still returns results where AliBaba’s naive
nested-loop join strategy times out. For queries CD3, CD5, LS4 and LS6 it even
beats the local federation.

Figure 3 summarizes our results in the SP2Bench scenario. We observe that
even the centralized Sesame store has severe problems answering the more com-
plex queries, which is in line with previous investigations from [21].5 Except
for the outlier query SP1, the trends are quite similar to those observed in the
(LS) and (CD) scenario, with the centralized scenario being superior to the local
federation, which is again superior to the SPARQL Endpoint federation. Query
SP1 is a simple query that asks for a specific journal in the data set. It can be
answered efficiently on top of the local federation, because the federation is split

5 In the experiments from [21] Sesame was provided with all possible index combina-
tions, whereas in these experiments we use only the standard indices. This explains
why in our setting Sesame behaves slightly worse than in the experiments from [21].
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Fig. 3: Scenario (A): Results of SP2Bench Queries

up by type and the journals are distributed across only two federation mem-
bers, so the system benefits from the parallelization of requests. In summary,
the SP2Bench experiments show that, for more complex queries and federation
among a larger number of federation members (as indicated in Table 2), current
federation approaches are still far from being applicable in practice.

Figure 4 visualizes our results for the Linked Data scenario (B). Regarding
overall query time, the bottom-up and mixed approaches behave similarly: both
perform run-time discovery and the mixed strategy cannot use its partial knowl-
edge to restrict sources, but only to load relevant sources earlier. This leads to
earlier result reporting, but is not reflected in the overall query time. In some
cases the mixed approach is even slightly worse than bottom-up, due to the over-
head imposed by using local source indices. The top-down approach, though, is
able to restrict the number of sources to be retrieved, leading to better query
times in many cases. For example, for query LD8 the query time for bottom up
evaluation is 19.1s, while top-down requires 4.2s, an improvement of 75%, made
possible by the lower number of sources retrieved in the top-down scenario.

Overall, the top-down approach uses its centralized-complete knowledge to
identify relevant sources and exclude non-relevant sources. In a dynamic scenario,
though, such as Linked Data, it may be infeasible to keep local indexes up-to-
date, so exploration-based approaches like bottom-up or the mixed approach,
which do not rely on complete knowledge, may be more suitable.

5 Conclusion

As witnessed by the evaluation, our benchmark is flexible enough to cover a
wide range of semantic data application processing strategies and use cases,
ranging from centralized processing over federation to pure Linked Data pro-
cessing. Clearly, our experimental analysis is not (and does not intend to be)
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complete with respect to covering all existing systems and solutions – yet we
have provided a flexible benchmark suite that can be used and extended by
others to evaluate alternative approaches, systems, and scenarios.

Extensions we are planning to address in future work particularly include
queries targeted at the new SPARQL features that will be published in the com-
ing SPARQL 1.1 release such as aggregation, nested subqueries, and built-in
support for federation. Further, given that the current data sets and queries
focus on instance data and query answering over ground RDF graphs, exten-
sions for testing reasoning capabilities (e.g., over RDFS and OWL data) in a
distributed setting are left as future work. With our flexible framework, though,
it is straightforward to incorporate such scenarios with little effort, and we invite
the community to contribute to FedBench with own data and query sets.

Finally, our evaluation has revealed severe deficiencies of today’s federation
approaches, which underline the practicability of FedBench. As one of our major
findings, data statistics – which are explicitly included in our benchmark suite
– play a central role in efficient federated data processing: as indicated by our
results, they are crucial in optimization to minimize the size of results shipped
across federation members and requests exchanged within the federation.
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